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Abstract

This dissertation focuses on the behavior of 〈|r|2〉 in a turbulent flow, where

r = x1 − x2 is the separation distance between particle pairs. There are three

main contributions of this thesis:

• We developed a new formalism for the study of backward dispersion for

both deterministic and stochastic tracers. We performed a systematic

numerical study of deterministic tracers and investigated small and long

time scaling laws, revealing a small time t4 scaling and verifying the t3

behavior at long time. This t4 is a higher order term expansion of the

dispersion after the ballistic t2 and a short time t3 term. We have also

shown analytically how the Batchelor range persists for all times. For

the stochastic tracers, we analytically computed an exact t3 term in the

separation using Ito calculus. We have shown numerically that this term is

dominant at long times and that it seems to correspond to the asymptotic

behavior of the deterministic tracers. These tracers are the mass-less

inertia free particles following the velocity field lines.

• We solved the ”inverse problem” for fluid particle pair statistics by show-

ing that the time evolution of the probability distribution of pair separa-

tions is the exact solution of a diffusion equation with suitable diffusivity.
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The ”inverse problem” refers to this general framework that is used to

convert observed measurements into information about a physical object

or system. In contrast to common assumptions, we have shown that short

time correlation is not a necessary condition for the system to be described

by a diffusion equation. We have shown the assumptions necessary to ar-

rive to the Kraichnan and Lundgren diffusion model and have studied

numerically what these assumptions imply.

• We developed an analytical model for Gaussian random fields in an effort

to compare it with kinematic simulation models. We have shown that

our model has a very rich physics and agrees with much of the kinematic

simulation physics at low Reynolds number. Unlike kinematic simulations,

within our model, we can drive the system to very high Reynolds numbers

and observe the asymptotic behaviors. The insights provided by our model

and its asymptotic behavior can yield further arguments in the debate on

the actual behavior of the kinematic simulations.
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Introduction

Why study particles dispersion in a Turbulent

Flow?

This thesis is an endeavor to shed light on the behavior of particle separations

carried by a Turbulent flow. Turbulence is actually one of the most common

observed states in nature and most fluids and plasmas are in a turbulent motion.

The earth atmosphere is in a constant turbulent motion as well the oceans and

the interior of the planet. Turbulent state can be found in blood or engine

fluids. It can e.g. characterize the dynamics of stellar interiors or interstellar

media and even the motion of tangles of quantized vortices in superfluids.

The particular study of the particles separation r(t) = x1(t)−x2(t) between

two tracers and their time evolution informs us on how a material carried by a

flow in a turbulent state is spreading. The tracers ”probe” the behavior of the

flow and provide information on the mechanisms generating the turbulence. For

example, Bodenschatz et al. infers that we cannot understand the evolution of

a cloud without the relative dispersion of the drops and ice particles embedded

within a turbulent flow [14]. This has a clear application to meteorology but

also it can be critical when trying to predict the span of a radioactive cloud

after a nuclear disaster or the impact of a biological attack. A more common

1



problem faced on daily basis by the people in urban environments is the air

pollution [97]. Under sea, the living oceanic organisms undergo a proliferation

driven by the turbulent motion of the seas and the biological growth is strongly

influenced by the state of the flow [49, 48, 95, 31].

Relative particle dispersion is also crucial for the stellar formation mecha-

nism [53, 96]. The stars inner part in a liquid state is constantly under extraor-

dinary stresses (pressure, temperature, ...) and therefore highly turbulent. The

turbulent flow favors the mixing of the different elements composing the stars

and the homogenization of the inside temperature. Lazarian et al. [65] under-

stood the fast magnetic reconnections taking place in stars as a consequence of

the motion of the turbulent media. The fast magnetic reconnections can explain

the occurrence of solar flares and gamma ray bursts. The intergalactic medium

generated during the formation of large scale structure also exhibits a turbulent

behavior [85] which holds an important role in galaxies formation.

What is turbulence?

From Da Vinci to Reynolds

Turbulence is still an imperfectly understood phenomenon. It has already been

recognized 500 years ago as a distinct fluid behavior and Leonardo Da Vinci

seems to be one of the first to report a scientific description (see figure 1). He

called this fluid behavior ”turbolenza”.

The Navier-Stokes equations are universally believed to encapsulate the

physics of all fluid flows in the classical regime including the turbulent one.

They have been derived by Claude-Louis Navier and George Gabriel Stokes

2



Figure 1: Sketch of a turbulent flow originating from one of Da Vinci’s sketch
book.

during the 19th century from the second Newton’s law:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·T + f , (1)

where u is the velocity vector of fluid elements, ρ is the fluid density, p is the

pressure, T is the deviatoric component of the total stress tensor and f the body

forces per unit volume acting on the fluid. In this thesis we are principally

interested by incompressible flow of Newtonian fluids leading to ”simplified”
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equations

∂u

∂t
+ u · ∇u = −∇p+ ν∇u + f , (2)

∇ · u = 0,

where we redefine p ≡ p/ρ, f ≡ f/ρ and ν = µ/ρ is the kinematic viscosity and

µ is the dynamic viscosity. These equations are rather difficult to handle and

few analytical solutions are known to these days. They are highly non linear

and lead to strong chaotic behaviors.

Osborne Reynolds in 1851, was the first to systematically investigate the

transition from laminar flow to turbulence. He introduced the concept of the

dimensionless Reynolds number that characterize the state of the flow

Re =
UL

ν
, (3)

where U is a measure of the magnitude of the velocity of the flow at the length

scale L. The laminar state is described by Re→ 0 and turbulence by Re→∞.

A modern understanding of turbulence

Defining turbulence is a difficult task. In 1922 Richardson gave this description:

Big whorls have little whorls,

which feed on their velocity;

And little whorls have lesser whorls,

so on to viscosity.

The concept behind these verses is that the energy is injected mechanically into

the system at large scale, is transferred toward the smaller scales through the
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so-called ”energy cascade” process and dissipated into heat at the molecular

scales. There are a few features that are generally universally accepted:

• it is a chaotic process meaning that the initial conditions fully determine

the future behavior of the particles of the flow but long term prediction

are difficult in practice. This concept however has been challenged by the

emergence of the spontaneous stochasticity ideas that suggest that the

particles forget their initial positions.

• it is a 3-dimensional process. Turbulence generates 3D vortices with non-

zero rotationality for initial conditions with vorticity. This process is

known as vortex stretching and is the core mechanism for the energy

cascade from large scales to small scales.

• it is a dissipative process, the entropy is always increasing and it enhances

mixing. The system needs an sustained energy input for the turbulent

state to persist.

• it is characterized by intermittencies. The kinetic energy is dissipated in

an irregular manner.

In 1941, Kolmogorov wrote one of the most influential series of papers in

the field of isotropic homogeneous turbulence (K41) [57, 58, 56] and laid some

fundamental concepts. He distinguished between domains of scales. The large

scales at which the energy is injected characterized by the integral scale. In

the inertial range, the system can be statistically described only by the energy

dissipation ε = −dE
dt

. As a consequence the typical time scales related to particle

pairs separated by a distance r is τ(r) = r2/3/ε1/3. In the dissipation range,

5



the system can be statistically described by the energy dissipation ε and the

viscosity ν. It is characterized by the Kolmogorov length scale η = (ν3/ε)1/4

and the Kolmogorov time scale τ = (ν/ε)1/2. Although K41 is known now to not

be accurate as it ignores intermittencies, it is often used as a standard to check

experimental, numerical or analytical results. For example let S(r) = 〈|δu|2〉

(where δu = u(x + r)−u(x)) be the second order structure function depending

on r. By dimensional analysis in the inertial range we have:

S(r) = C(εr)2/3, (4)

where C is a dimensionless constant. This is known as the Kolmogorovs 2/3-

law. This can compared to the numerical studies by Bitane et al. [10] in figure

2.

Outline of this thesis

This thesis is designed with a very simple structure in mind:

• A first expository chapter on the different research studies previously done

and leading to this thesis work.

• A second chapter addressing the specific subject of backward dispersion.

This chapter aims for a more ”direct” study of dispersion with less mod-

eling than for the following chapters to help familiarize the reader with

the actual features and the different issues observed in real turbulence (or

Navier Stokes turbulence).

• A third chapter introducing the diffusion models concept in turbulence.

6



Figure 2: From Bitane et al. [10]: Second order structure function for two
different Reynolds numbers.

Diffusion models are really dominating the study of dispersion in turbu-

lence. The previous chapters help discriminate between the behavior of

the models and the observed physics.

• A fourth and last chapter about an analytical diffusion model for synthetic

turbulence models (non Navier-Stokes). The modeling aspect is taken to

another level and we understand better from the previous chapters why

there is a loss in capturing the actual physics of turbulence.

What has been done before this thesis work

In a first chapter we summarize the preceding works that led to this thesis

work. This chapter exposes the different known features related to dispersion.

7



We introduce the Batchelor range, the t3 range and the large scale diffusive

range.

We then recapitulate the history of the most influential diffusion models that

have been designed for particle pair dispersion and that are the most relevant

for this thesis. It all started in 1926 with the seminal work of Richardson and

additionally we will especially insist on the work of Batchelor and Kraichnan.

Finally, we introduce the kinematic simulations, a subfield of turbulence

research. They have been created with the desire to simplify the study of

turbulent flows by simulating a quasi-random Gaussian velocity field with a

Kolmogorov spectrum. These models however have been realized to have very

different behavior than that of real turbulence. In the inertial range for instance,

it is not yet very well understood if the dispersion is proportional to t3, t6 or

t9/2.

The first chapter is an introductory chapter that strives to build the foun-

dations and motivations for the following chapters.

Backward dispersion

The second chapter will focus on tracers labeled at the final time tf and traveling

backwards for times t ≤ tf . The dispersion of fluid particles backwards-in-time

is critical for understanding the mixing properties of turbulent flows [87]. Mix-

ing is a process by which scalar or vector quantities such as dye concentration,

temperature or magnetic fields, are transported due to the action of an under-

lying flow [91, 16]. These fields are stretched and contorted, often violently, and

if they have intrinsic diffusive properties (as most naturally occurring systems

do), they are dissipated. If the substance is non-diffusive, its value at a point is

8



the initial value at the starting point of the backwards deterministic trajectory

ending there. The separation of these trajectories ending at nearby points is

the principal subject of study for backward deterministic particle dispersion. For

diffusive substances, initially separate bits of material can be brought together

by the action of the turbulent flow and molecular effects. Here an averaging

process over backwards stochastic trajectories recovers the value at the field at

any point. The reversal of the process described above – coalescence of forward

perturbed trajectories – is known as backwards stochastic particle dispersion.

Backwards particle dispersion is a key feature to understanding many physical

problems.

In this chapter we investigate the properties of backwards separation for

both deterministic and stochastic tracers. We perform a systematic numerical

study of deterministic tracers at Taylor-scale Reynolds number Re = 433. We

investigate small and long time scaling laws, revealing a small time t4 scaling and

verifying the t3 behavior at long time. We also measure the observed Richardson

constant for different final particle separations in addition to the corresponding

probability distribution functions (PDFs) of the dispersion. For the stochastic

tracers, we analytically compute an exact t3 term in the separation using Ito

calculus and show numerically that this term is dominant at long times. This t3

term seems to correspond also to the asymptotic behavior of the deterministic

tracers.

Diffusion models

The third chapter will build on the concept of diffusion models. L. F. Richard-

son, in a classic paper [83], initiated the study of dispersion of particle pairs
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in turbulent flows, introducing a diffusion model with a scale-dependent eddy-

diffusivity:

∂P (r, t)

∂t
=

1

r2

∂

∂r

(
r2K(r)

∂P (r, t)

∂r

)
, (5)

where P (r, t) is the probability distribution of a separation r at time t. There

has since been much discussion about the accuracy of this description.

We solve an inverse problem for fluid particle pair statistics: we show

that a time sequence of probability density functions (PDFs) of separations

can be exactly reproduced by solving the diffusion equation with a suitable

time-dependent diffusivity. The diffusivity tensor is given by a time integral

of a conditional Lagrangian velocity structure function, weighted by a ratio

of PDFs. Physical hypotheses for hydrodynamic turbulence (sweeping, short

memory, mean-field) yield simpler integral formulas, including one of Kraich-

nan and Lundgren (K-L) [59, 69]. We evaluate the latter using a space-time

database from a numerical Navier-Stokes solution for driven turbulence.

We also derive a similar equation for the join probability distribution of the

separations and the velocity differences. This equation might provide a more

accurate description of the system as the acceleration field is auto correlated

with shorter time scales than the velocity field.

Dispersion and diffusion models in synthetic turbulence

In the last chapter we present an analytical model to improve the understand-

ing of Synthetic models. Synthetic models of Eulerian turbulence like so-called

kinematic simulations (KS) are often used as computational shortcuts for study-

ing Lagrangian properties of turbulence. These models have been criticized by
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Thomson and Devenish (2005) [94], who argued on physical grounds that sweep-

ing decorrelation effects suppress pair dispersion in such models.

We derive analytical results for Eulerian turbulence modeled by Gaussian

random fields, in particular for the case with zero mean velocity. Our starting

point is an exact integrodifferential equation for the particle pair separation

distribution obtained from the Gaussian integration-by-parts identity. When

memory times of particle locations are short, a Markovian approximation leads

to a Richardson-type diffusion model. We obtain a time-dependent pair diffu-

sivity tensor of the form Kij(r, t) = Sij(r)τ(r, t), where Sij(r) is the structure-

function tensor and τ(r, t) is an effective correlation time of velocity increments.

Crucially, this is found to be the minimum value of three times: the intrinsic

turnover time τeddy(r) at separation r, the overall evolution time t, and the

sweeping time r/v0 with v0 the rms velocity. We study the diffusion model

numerically by a Monte Carlo method. With inertial ranges like the largest

achieved in most current KS (about 6 decades long), our model is found to

reproduce the t9/2 power law for pair dispersion predicted by Thomson and De-

venish and observed in the KS. However, for much longer ranges, our model

exhibits three distinct pair-dispersion laws in the inertial range: a Batchelor

t2 regime, followed by a Kraichnan-model-like t1 diffusive regime, and then a

t6 regime. Finally, outside the inertial range, there is another t1 regime with

particles undergoing independent Taylor diffusion. These scalings are exactly

the same as those predicted by Thomson and Devenish for KS with large mean

velocities, which we argue may hold also for KS with zero mean velocity. This

may, however, be an artifact of our Markovian approximation as we discuss

further in this thesis. Our results support the basic conclusion of Thomson
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and Devenish (2005) that sweeping effects make Lagrangian properties of KS

fundamentally differ from those of hydrodynamic turbulence for very extended

inertial ranges.
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Chapter 1

What we know about dispersion
in turbulence

1.1 Introduction

In this chapter we focus on the understanding of the physics related to turbulent

dispersion previous to this thesis work. It will be an opportunity to introduce

the subject for the coming chapters. We first look at different experimental and

numerical results found in the literature and expose the common approaches of

modeling the physics.

1.2 Features of turbulent dispersion

1.2.1 Batchelor range

Turbulent dispersion is characterized by a rich set of features that varies with

the different scales (time and space) of the system. The Batchelor range relates

to the small scales and was first identified by G.K. Batchelor in 1950 [4]. The

position of an element of fluid within the flow is simply related to the velocity

field by

dx(t)

dt
= u(x(t), t), x(t0) = x0, (1.1)
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therefore the dispersion between two elements separated by a distance r at a

time t is

dr(t)

dt
= δu(r(t), t), r(t0) = r0, (1.2)

or in the integral form

r(t)− r0 =

∫ t

t0

δu(r(s), s)ds. (1.3)

By taking the dot product of (1.2) with (1.3) and taking the ensemble average

we obtain

1

2

d〈|r(t)− r0|2〉
dt

=

∫ t

t0

〈δu(r(t), t) · δu(r(s), s)〉ds (1.4)

Batchelor applied the K41 theory to derive a short time expansion of (1.4)

1

2

d〈|r(t)− r0|2〉
dt

' 〈|δu(r0, t0)|2〉(t− t0) (1.5)

= C(εr0)2/3(t− t0) (1.6)

where C is the Kolmogorov constant for the second-order velocity structure

function. By integrating we get

〈|r(t)− r0|2〉 = C(εr0)2/3(t− t0)2 (1.7)

Ouellette et al. in 2006 [74] were able to track hundreds of particles at Rλ = 815

with very high temporal resolution. Their results show clear evidence of the

Batchelor regime at small times (figure 1.1).

1.2.2 The t3 regime

The t3 regime was predicted in 1926 by Richardson [83] as a consequence of his

diffusion model (see next section) and has been the object of many controversies.

〈|r(t)− r0|2〉 = gεt3 (1.8)
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Figure 1.1: From Ouellette et al. in 2006: Mean square relative dispersion for
50 different bins of initial separations, ranging from 0-1 mm (≈ 0 − 43η) to
49-50 mm (≈ 2107− 2150η), compensated by Batchelor scaling (C2 = 2.1).

is referred as the Richardson-Obukhov law and g is the so called Richardson con-

stant. Until recently, it has been a real experimental and numerical challenge to

probe this regime as it requires very high Reynolds numbers to be observed. Al-

though numerous experimental and numerical studies seem to indeed highlight

this regime, the results are not yet fully convincing.

Despite the lack of evidence until the late 90’s, there is a simple argument

to expect such a regime. The Kolmogorov theory infers the velocity difference

to scale as δu = Aεr1/3 and dr
dt

= δu. The resulting long time dependence

is therefore r ∼ gεt3. The transition from the Batchelor regime to the t3 is

usually characterized by the Batchelor time tB = ε−1/3r
2/3
0 , the time when the
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Figure 1.2: From Julien et al. in 1999: Mean square relative dispersion. (Inset)
Data compensated by t3.

two regimes equal each other

gεt3 ∼ C(εr0)2/3t2 (1.9)

In figure 1.2 we present the experimental results by Julien et al. [72] of the

particles undergoing a t3 dispersion in a 2 dimensional turbulent flow Reynolds

number ReL ∼ 5. Figure 1.3 shows DNS results by Bitane et al. [10] for different

initial separations for Reynolds number Reλ = 460 and Reλ = 730 (among the

highest Reynolds numbers reached in DNS to this day.). Note that it is unclear

even with these high Reynolds numbers if the system has reached an asymptotic

regime.

Another fundamental feature is that the dispersion within the t3 regime is
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Figure 1.3: From Bitane et al. in 2012: Compensated mean-squared displace-
ment 〈|R(t)−R(0)|2〉/(εt3) as a function of t/t0 with t0 = S2(r0)/(2ε) for various
initial separations and Rλ = 730 (◦) and Rλ = 460 (+). The two curves show
behaviors of the form 〈|R(t)−R(0)|2〉 ' gεt3 +At2, with with A = S2(r0), given
by Batchelors ballistic regime (black dotted line), and A = 2.5/t20 (grey dashed
line).

”faster” backward than forward. The Richardson constant has been evaluated in

the literature to range between 0.52 and 0.64 depending on the Reynolds number

for forward dispersion. In 2005 Sawford et al. [88] estimated the backward

Richardson constant to be gB = 1.14 and in 2011, Eyink estimated this constant

to be gB = 1.35 [40] (see figure 1.4).
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where K is the mass diffusivity and ρ(x, t) is the density of Brownian particles at

point x and at time t. He brought the solution of the problem to the attention of

physicists, and presented it as a way to indirectly confirm the existence of atoms

and molecules. In 1926, Lewis Fry Richardson inspired a whole new subfield

of turbulence by attempting to describe the 2-particle dispersion in turbulence

as a diffusion process with scale-dependent diffusivity. Richardson recollected

numerous studies evaluating the measurement of the diffusivity (using dx2/dt =

2K) for 2-particle dispersion in a turbulent flow at different scales (see figure

1.5). He modeled the diffusivity to be

K(r) ∼ r4/3. (1.11)

Obukhov, a student of Kolmogorov, much later realized that the only dimen-

sional form consistent with K41 for a scale only dependent diffusivity is

K(r) = k0ε
1/3r4/3. (1.12)

Richardson then proposed the following diffusion equation for the relative dis-

persion

∂P (r, t)

∂t
=

1

rd−1

∂

∂r

[
rd−1K(r)

∂

∂
P (r, t)

]
(1.13)

where P (r, t) is the probability distribution of separation between particle pairs

and d is the space dimensionality. Equation (1.13) admits a self similar solution

in 3 dimensions with (1.11) for K(r)

P (r, t) =
429

70

√
143

2

[
1

π〈r2(t)〉

]
exp

[
−
(

1287r2

8〈r2(t)〉

)1/3
]

(1.14)

with the mean square displacement

〈r2(t)〉 = gεt3 (1.15)
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Figure 1.5: From Richardson 1926: Log-log plot of K versus particle separations
lies on a line of slight curvature.

where g = 1144
81
k3

0. It is interesting to note that, despite the crude heuristic

derivation of the Richardson diffusivity, Richardson’s predictions became a stan-

dard for the study of relative dispersion in turbulence. In Figure 1.6 we show

the PDF measured by Bitane et al. [10] plotted in self-similarity units (units

for which the Richardson PDF appears as a straight line). Most experimental

and numerical studies (if not all) show strong agreement between the 2-particles

separation PDF and the Richardson PDF for 0.4 . (r/
√
〈r(t)2〉)2/3 . 2
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Figure 1.6: From Bitane et al. in 2012: Probability density function of the
distance r at time t = 2.5t0 (a) and t = 5t0 (b) and for various values of
the initial separation. The units are normalized such that Richardsons diffusive
density distribution (1.14) appears as a straight line (represented here as a black
dashed line).

1.3.2 The Batchelor model

In 1952, Batchelor [3] suggested that the diffusivity is time dependent rather

than space dependent, i.e. K(t) = k0εt
2, leading to similar dispersion behavior

〈r2(t)〉 = gεt3 with g = 2k0. The evolution of the probability distribution is

however described by the Batchelor probability distribution

P (r, t) =

[
3

2π〈r2(t)〉

]3/2

exp

[
− 3r2

2〈r2(t)〉

]
. (1.16)

In 1987, Klafter et al. [55] noted that K41 is consistent with a whole set of

diffusivities K(r, t) = k0ε
atbrc yielding 〈r2(t)〉 = gεt3 with the constraints 2b +

3c = 4 and a = 1− c/2. Figure 1.7 shows measurements by Ouelette et al. [74]

of the probability distribution for different initial separations and the striking

agreement with the Batchelor PDF for initial separations well into the inertial

range and with the Richardson PDF for particles starting within the dissipation

range.
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Figure 1.7: From Ouelette et al. 2006: Probability density functions (PDFs)
of pair separations. The red straight line is the Richardson PDF, whereas the
blue curved line is the Batchelor PDF. The symbols show the experimental
measurements. Each plot shows a different initial separation; for each initial
separation, PDFs from 20 times ranging from 0 − 20τη are shown. Rλ = 815,
∆r(t) = |r(t)r0|, and 1mm ≈ 43η.
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1.3.3 The Kraichnan diffusion model

In 1965 - 1966 Kraichnan [60, 61] developed a field theoretic approach to fluid

dynamics similar to the ones used for quantum field problems namely the Lagra-

gian Direct History Interaction Approximation (LHDIA). Applying the LHDIA

theory for a convected scalar field [59], he was able to recover the Richardson’s

diffusion equation with the peculiar difference that the eddy diffusivity depends

on the duration of the dispersion along with separation between the particles:

∂P (r, t; r0, t0)

∂t
=

∂

∂ri

[
Kij(r, t, t0)

∂P (r, t; r0, t0)

∂rj

]
(1.17)

with

Kij(r, t, t0) =

∫ t

t0

< (ui(x + r, t)− ui(x, t))((uj(x + r, t|s)− uj(x, t|s)) > ds,

(1.18)

where ui(x, t|s) is the i−component of the velocity field at time s of the fluid

particle which arrives at x at time t. This formula differs from the Batchelor’s

one since it involves tracking fluid particles backward in time being therefore

additionally difficult to compute with standard numerical or experimental meth-

ods. The diffusivity for the PDF of particle separations obtained by Kraichnan

has the form for isotropic statistic

KL(r, t) = ε1/3r4/3F (x) (1.19)

with x = ε1/3t/r2/3 and KL and being the longitudinal component of the diffu-

sivity. Ott & Mann [82] found a simple fitting formula for Kraichnan’s LHDIA

solution, of the form

F (x) =
ax

1 + bx
(1.20)
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This formula reproduces the asymptotics of the LHDIA solution found by Kraich-

nan:

F (x) ∼ ax, x� 1; a = 2.32

F (x) ∼ a/b, x� 1; a = 2.00 (1.21)

Note that a is just the spatial Kolmogorov constant in the 2/3rd-law and a/b is

the coefficient of the asymptotic Richardson r4/3 eddy-diffusivity. Thus, these

constants can be easily obtained empirically as well as from LHDIA.

The self-similar solution of Kraichnan’s PDF equation, with the important

correction of Ott & Mann (2000), is

P (r, t) =
1

ε3/2t9/2N
G(x) (1.22)

with

G(x) = exp

[
9

4

∫ x

1

ds

s2F (s)

]
. (1.23)

The constantN is chosen to insure the normalization of the PDF
∫∞

0
r2P (r, t)dr =

1 from

N =
3

2

∫ ∞
0

G(x)x−11/2dx. (1.24)

If one uses the fitting formula for F (x) (1.20), one can obtain an analytical

expression for the function G(x):

G(x) = exp

[
−9

4

(
1

2ax2
+

b

ax
− (

1

2a
+
a

b
)

)]
(1.25)

= C exp

[
−9

4

(
1

2ax2
+

b

ax

)]
(1.26)

In figure 1.8 we present Ott & Mann measurement of the PDF particle separa-

tion and the how it compares to the Batchelor PDF, the Kraichnan PDF and

the Richardson PDF [82].
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Figure 1.8: Probability distribution of particle pairs separation distance com-
pared to the expressions of the Richardson PDF (solid), the Kraichnan PDF
(dashed), and the Batchelor PDF (dot-dashed).

1.4 Synthetic turbulence models

The challenges related to the Navier-Stokes have led scientists to develop simpli-

fied models that could encapsulate some of the essential physics of turbulence.

Elliot and Majda in 1996 developed one of the first synthetic models [34] with
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Figure 1.9: From Elliot and Madja in 1996: plot of the logarithmic derivative
of mean squared dispersion versus time. The solid line indicates a t3 scaling.

a Monte Carlo method for simulating an isotropic incompressible Gaussian ran-

dom field satisfying the scaling relations

〈|δu(r)|2〉 = Chr
2h (1.27)

for 0 < h < 1. For h = 1/3, which corresponds to the familiar Kolmogorov spec-

trum, they found a t3 law for the mean square particle dispersion for about eight

decades (see figure 1.9). Such promising results inspired numerous subsequent

works. However, despite the momentum of this field given by this seminal work

by Elliot and Majda, D. J. Thomson and B. J. Devenish in 2005 [94] pointed

out that the time-steps for the Monte Carlo simulation chosen might be too big

to resolve the relevant dynamics of the model.
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1.4.1 The Kinematic Simulation model

The kinematic simulation focus on generating an ensemble of random isotropic

incompressible three-dimensional velocity fields. The model introduced by Fung

and Vassilicos in 1998 [47] is somewhat different from the one developed by Elliot

and Majda. The velocity at position x and time t is given by

u(x, t) =
N∑
n=1

An cos(kn · x− ωnt) + Bn sin(kn · x− ωnt) (1.28)

where N is the number of modes. The directions of kn, An and Bn are chosen

at random with the constraints kn ⊥ An and kn ⊥ Bn and the magnitude are

such that

A2
n = B2

n = 2E(kn)∆kn. (1.29)

E(kn) is chosen to mimic the Kolmogorov spectrum

E(kn) =

{
Ckε

2/3k−5/3 for 2π/L ≤ kn ≤ 2π/η
0 otherwise.

(1.30)

with Ck being the Fourier Kolmogorov constant, L the integral length scale and

η the Kolmogorov scale. k1 = 2π/L and kN = 2π/η. The Kn can be related to k1

through a geometric relation (kn = k1a
n−1) or an algebraic relation (kn = k1n

α)

and kN/k1 can be thought as the Reynolds number.

1.4.2 The controversy

This model has showed similar t3 scaling law as for real turbulence for small

Reynolds number (see figure 1.10). In 2005 however, Thomson and Devenish

opened the debate on the actual behavior of this model [94]. In real turbu-

lence we expect typical time scale τ(r) of turn over time for eddies of size r to

be proportional to r2/3/ε1/3 (under K41 assumption), with K(r) ∼ δu2(r)τ(r)
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Figure 1.10: Fung and Vassilicos in 1998: Log-log plots of the dispersion in
kinematic simulations for kN/k1 = 1693. The averages were calculated over
2000 particle pairs. The wave numbers kn are distributed either algebraically
(AD) or geometrically (GD). (a) GD and N = 79, (b) AD and N = 20, (c)
AD and N = 40, (d) AD and N = 79, (e) AD and N = 125 and (f) AD and
N = 158. The dashed line is a line with slope equals to 3.
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Figure 1.11: 2005 Thomson and Devenish: The evolution of 〈r2〉 for non zero
mean velocity, 125 particle pairs per realization and 5 realizations of the flow
r0/L = 10−7, 10−6, 10−5, 10−4 and 103 (bottom to top) with L/η = 108 and
N = 1600. The straight lines are proportional to t3 and t6.

yielding the Richardson diffusivity K(r) ∼ ε1/3r4/3. For the kinematic simu-

lations, unlike real turbulence, the smaller eddies are not swept be the larger

eddies and the typical turn over time scale is simply τ(r) = r/u′ where u′ is the

rms velocity of the flow (or the typical velocity scale). This leads to a diffusivity

K(r) ∼ δu2(r)τ(r) ∼ ε2/3r5/3

u′
(1.31)

and a dispersion

〈r2(t)〉 ∼ ε4t6

u′6
. (1.32)
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Figure 1.12: 2005 Thomson and Devenish: The evolution of 〈r2〉 for zero mean
velocity, 125 particle pairs per realization and 5 realizations of the flow r0/L =
10−7, 10−6, 10−5, 10−4 and 103 (bottom to top) with L/η = 108. The straight
lines are proportional to t3 and t9/2. (b) The evolution of 〈r2〉/t9/2 for the same
simulations.

Figure 1.11 from Thomson and Devenish 2005 presents strong evidence for the

t6 law in the case of non zero mean velocity. In the case of zero mean velocity,

they argued that the particles undergo a mixture of t3 and t6 dispersion behavior

and ultimately sustain an asymptotic t9/2 behavior (see figure 1.12). u′ being

the local flow speed and p(u′) its PDF, this would results for the dispersion the

following relation:

〈r2(t)〉 ∼
∫ √εt

0

εt3p(u′)du′ +

∫ tε2/3/r
1/3
0

√
εt

ε4t6

u′6
p(u′)du′, (1.33)

potentially making a t9/2 contribution.
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1.5 Conclusion

We introduced three different aspects of research related to particle pair disper-

sion. We demonstrated the challenges and motivations related to these partic-

ular fields. The following chapters will build on these foundations and present

new perspectives on the matter.
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Chapter 2

Understanding backward
dispersion in turbulent flows

2.1 Introduction

The dispersion of fluid particles backwards-in-time is critical for understanding

the mixing properties of turbulent flows [87]. Mixing is a process by which

scalar or vector quantities such as dye concentration, temperature or magnetic

fields, are transported due to the action of an underlying flow [91, 16]. These

fields are stretched and contorted, often violently, and if they have intrinsic

diffusive properties (as most naturally occurring systems do), they are dissi-

pated. If the substance is non-diffusive, its value at a point is the initial value

at the starting point of the backwards deterministic trajectory ending there.

The separation of these trajectories ending at nearby points is the main subject

of study for backward deterministic particle dispersion. For diffusive substances,

initially separate bits of material can be brought together by the action of the

turbulent flow and molecular effects. Here an averaging process over backwards

stochastic trajectories recovers the value at the field at any point. The reversal

of the process described above – coalescence of forward perturbed trajectories
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– is known as backwards stochastic particle dispersion. Backwards particle dis-

persion is a key feature to understanding many physical problems ranging from

hydrodynamic turbulence [35], passive scalar transport and dissipative anoma-

lies [30, 93, 20], cloud formation [14], biological spread and enhanced growth

[49, 48, 95, 31], air pollution [97] stellar evolution [53, 96], occurrence of solar

flares [65] and galaxy formation [85].

It has been argued that in a turbulent flow, a pair of tracer particles sepa-

rate proportionally to t3 on average [83]. This prediction is now known as the

Richardson-Obukhov scaling law [80] and it remains a subject of controversy

and inquiry. Experimental and numerical studies of two-particle dispersion are

challenging as they require achieving a wide range separation between the dis-

sipation scale and the integral scale of the flow [87, 86]. Backward dispersion is

particularly difficult because it involves integrating the Navier-Stokes equation

forward in time and tracking the tracers backward in time. Most of the work on

deterministic particle dispersion has therefore been in the forward-in-time set-

ting. There the t3 scaling has been numerically and experimentally thoroughly

investigated though the physical mechanisms behind this growth are not com-

pletely well understood. Furthermore, it has been observed that backward and

forward dispersion are quantitatively different [88, 36, 6]. For example, parti-

cles are observed to spread faster backwards-in-time than forwards. Since it is

backward and not forward particle dispersion that matters for understanding

mixing of passive fields, conclusive studies on scaling laws for backwards particle

separations are of great importance.
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2.2 Deterministic Tracers

Consider a passive tracer with position x(t) advected by the velocity field u and

whose second derivative is the acceleration field a. For a Navier-Stokes velocity

u, the a is given by: a ≡ fext − ∇p + ν4u. The tracer is labeled at the final

time tf and travels backward for times t ≤ tf . The dynamical relations are

d

dt
x(t) = u(x(t), t), x(tf ) = xf , (2.1)

d

dt
u(x(t), t) = a(x(t), t). (2.2)

Defining τ(s) ≡ s − t and τ ≡ τ(tf ), it follows from equations (2.1) and (2.2)

that

x(t) = xf − τu(xf , tf ) +

∫ tf

t

τ(s)a(x(s), s)ds. (2.3)

The backward separation of particle pairs separated by rf at the final time is

r(τ) ≡ x(t; xf + rf )−x(t; xf ). The space-averaged squared separation satisfies:

〈
|r(τ)− rf |2

〉
xf

= τ 2Su
2 (rf ) +

〈∣∣∣∣∫ tf

t

τ(s)δaL(rf ; s) ds

∣∣∣∣2
〉

xf

− 2τ

∫ tf

t

τ(s) 〈δu(rf ; tf ) · δaL(rf ; s)〉xf ds, (2.4)

where Su
2 (rf ) = 〈|δu(rf ; tf )|2〉xf is the second order velocity structure function,

δu(rf ; tf ) ≡ u(xf + rf , tf )− u(xf , tf ) is the Eulerian increment of the velocity

field at the final time, δaL(r; s) ≡ a(x(s; xf + rf ), s) − a(x(s; xf ), s) is the

Lagrangian acceleration increment and 〈·〉xf denotes integration over the final

particle positions xf . This formula is exact – no assumptions were needed to

arrive at equation (2.4). The τ 2 term appearing in equation (2.4) is the so-called
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Batchelor regime [4] where the particles undergo ballistic motion and is present

for all time and is not the result of a short time expansion. Note that in the

forward case, the last term would have an opposite sign and {uf , rf , tf} would

be replaced by {u0, r0, t0}. If we consider small τ , then a first order Taylor

expansion of equation (2.4) yields:〈
|r(τ)− rf |2

〉
xf
≈ Su

2 (rf )τ
2 + 2〈ε〉xτ 3 +

1

4
Sa

2 (rf )τ
4 +O(τ 4) (2.5)

where Sa
2 (rf ) is the second order acceleration structure function at the initial

time. We here have neglected the τ 4 term coming out of the expansion of

the last term in (2.4). Although we have no theoretical argument to do so,

it agrees with the numerical results presented later. We have also assumed

that the initial separation rf is in the inertial range so as to use the Ott-Mann

relation – an (instantaneous) Lagrangian analogue of the 4/5th law – expressing

〈δu(rf ; tf ) · δa(rf ; tf )〉xf ≈ −2〈ε〉x where ε is the viscous energy dissipation

[42, 82]. The τ 3 term appearing in (2.5) has been derived in [10] for the forward

case with an opposite sign and explored in DNS studies in [13]. The equivalent

term to our τ 4 term has also been observed for the case of the velocity difference

statistics [13]. There it is described as the initial abrupt variation of the velocity

difference and here we can further understand it as a Bachelor-type-range (in a

sense of first order expansion in time) for the velocity separation.

2.3 Stochastic Tracers

Consider now the following backward stochastic equation governing the flow of

passive tracer particles:

dx̃(t) = u(x̃(t), t)dt+
√

2κ d̂Wt, x̃(tf ) = xf . (2.6)
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Here κ is the molecular diffusivity, Wt is the standard Brownian motion and

d̂ is the backwards Itô differential [63]. Note that if the viscosity of the fluid

is fixed and κ → 0, we recover the deterministic equation (2.1). Along a path

defined by equation (2.6), the backward Itô lemma [63, 27] can be used to show

that the Navier-Stokes velocity satisfies

du(x̃(t), t) = (∂su + u · ∇u− κ∆u) |(x̃(t),t) dt+
√

2κ∇u |(x̃(t),t) ·d̂Wt

= ((ν − κ)∆u−∇p) |(x̃(t),t) dt+
√

2κ∇u |(x̃(t),t) ·d̂Wt

= aκ(x̃(t), t)dt+
√

2κ∇u |(x̃(t),t) ·d̂Wt, (2.7)

This is a stochastic generalization of equation (2.2). The quadratic variation

term −κ∆u appearing in the backward Itô Lemma has the opposite sign than

the forward case which would yield a similar expression but with aκforw ≡ fext −

∇p+ (ν + κ)∆u. By integrating, we obtain

x̃(t) = xf − τu(xf , tf ) +

∫ tf

t

τ(s)aκ(x̃(s), s)ds

+
√

2κ

∫ tf

t

τ(s)∇u(x̃(s), s) · d̂Ws −
√

2κWt. (2.8)

This equation is the analogue of equation (2.3) but for paths with intrinsic ad-

ditive white noise. Note that setting κ = ν leads to a dramatic simplification

where the laplacian term in the acceleration vanishes: aν = fext −∇p. Further,

Eyink in [36] has shown strong evidence that the backward dispersion is inde-

pendent of κ at long times. Motivated by its simplicity and the result of [36],

for the remainder of this thesis – in both the theoretical and numerical results

– we make the choice of κ = ν, i.e. we study unity Schmidt/Prandtl numbers.
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Consider two trajectories x̃1(t) and x̃2(t) ending at the same point xf and

satisfying equation (2.6) with independent Brownian motions W1 and W2 re-

spectively. The natural object of study in this setting is the spaced averaged

mean (in the sense of averaging over the Brownian motions) squared distance

r̃(τ) ≡ x̃1(tf − τ)− x̃2(tf − τ) between the trajectories advected by independent

Brownian motions. In the deterministic case, in order to study the squared sep-

aration of two particles it was necessary to consider particles which (at the final

time) were separated by a positive distance |rf |. In the stochastic setting this is

no longer necessary and starting particles at the same point effectively removes

the dependence on the final separation and final velocity difference. We have:

|̃r(τ) +
√

2νδWt|2 =

∣∣∣∣δ ∫ t

t

τ(s)aν(x̃(s), s)dτ

∣∣∣∣2

+2
√

2ν

∫ tf

t

∫ tf

t

τ(s)τ(s′)δaν(x̃(s), s) · δ
[
∇u(x̃(s′), s′) · d̂Ws′

]
ds

+ 2ν

∣∣∣∣ δ ∫ tf

t

τ(s)∇u(x̃(s), s) · d̂Ws

∣∣∣∣2 (2.9)

Lets consider the last term on the right hand side and take the expectation over

the two independent Brownian motions. We get by Itô isometry

E1,2

[ ∣∣∣∣∫ tf

t

τ(s)δ∇u(x̃(s), s) · d̂Ws

∣∣∣∣2 ] = E1,2

[∫ tf

t

τ(s)2|δ∇u(x̃(s), s)|2ds

]
.

(2.10)

E1,2[·] being the ensemble average over the two independent Brownian motions.

Letting 〈·〉xf denote the space average, we find using the properties of the Brow-

nian motion and homogeneous and isotropic turbulence

E1,2

[
〈|δ∇u(x̃(s), s)|2〉xf

]
= 2E1,2

[
〈|∇u(x̃(s), s)|2〉xf

]
. (2.11)
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The two Brownian motions being independent, the ensemble average over the

cross term is identically 0 in equation (2.11). Using the fact that 〈ε〉x =

ν〈|∇u|2〉x we finally obtain

E1,2

〈
|̃r(τ) +

√
2νδWt|2

〉
xf

=
4

3
〈ε〉xτ 3 + E(τ) (2.12)

where

E(τ) = E1,2〈|δA(τ)|2〉xf + E1,2 〈δA(τ)δU(τ)〉xf . (2.13)

with

A(τ) =

∫ t

t

τ(s)aν(x̃(s), s)dτ (2.14)

and

U(τ) =

∫ tf

t

τ(s)∇u(x̃(s), s) · d̂Ws. (2.15)

If the turbulence is homogeneous, time stationary and space ergodic, then the

space averaged energy dissipation 〈ε〉x is constant in time. If we instead de-

cided to study forward stochastic tracers, then equation (2.12) still holds but

with minor differences in the error term including that integral A(τ) involve

aνforw (defined earlier) instead of aν . It is also important to remind the reader

that the simplicity of (2.12) is a consequence of the choice of κ = ν. The

strong evidences shown in [36] that the long time behavior in independent of

the choice of κ lead to believe that, despite a more complex analytical form for

E1,2

〈
|̃r(τ) +

√
2νδWt|2

〉
xf

with κ 6= ν, it would yield the same behavior.

2.4 Numerical Results

In order to understand the behavior of the different terms in equation (2.12),

we evaluate them using turbulence data from direct numerical simulations. We
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use the Johns Hopkins Turbulence Databases (JHTDB) [67, 26], which pro-

vides online DNS data over an entire large-eddy turnover time for isotropic and

homogeneous turbulence at Taylor-scale Reynolds number Reλ = 433. The

integration of particle trajectories is performed inside the database using the

getPosition functionality [99] and a backward second-order Runge-Kutta inte-

gration scheme.

Figure 2.1 shows our results for the different terms in (2.12) compensated

by 4/3〈ε〉xτ 3. Error bars are calculated by the maximum difference between

two subensembles of N/2 samples and N = 5×108. The terms E1,2〈|δA(τ)|2〉xf

and −E1,2 〈δA(τ)δU(τ)〉xf behave in a very similar fashion. They grow as τ 5

for short time and seem to reach an asymptotic τ 3 for τ � τν , τν being the

Kolmogorov time-scale. The difference E(τ) between these two terms however

never exceeds 16% of 4/3〈ε〉xτ 3 (29% including the error bars) at all points in

time. See inset of Figure 2.1. As a consequence of E(t) being small relative to

4/3〈ε〉xτ 3, we observe the dispersion is

E1,2

〈
|̃r(τ) +

√
2νδWt|2

〉
xf
≈ 4

3
〈ε〉xτ 3 (2.16)

for almost three decades.

We now take a moment to speculate on the behavior of particle trajectories

for very high Reynolds number turbulence. Note that, by the zeroth law of

turbulence 〈ε〉x tends to a non-zero constant in the inviscid limit. Therefore

the 4
3
〈ε〉xτ 3 term will remain for arbitrarily small viscosity. Figure 2.1 shows

that, in the inertial range, the terms E(t) is small compared to 4
3
〈ε〉xτ 3. In the

inviscid limit, the inertial range expands to all scales and if E(t) is generically

small in this range then there is good evidence for spontaneous separation of
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Figure 2.1: Plots of the different terms of equations (2.12) and (2.13). The
dash-dotted line goes like τ 5 and the dashed lines represent 4

3
〈ε〉xτ 3. The inset

is a closed-up view in semi logarithmic scale to compare the dispersion to E(τ).

particle trajectories emanating from a single point in the zero viscosity limit.

This is the hallmark of the phenomenon of spontaneous stochasticity [8, 50, 23,

64, 32, 33, 23, 36].

We now compare the stochastic particle dispersion of section 2.3 to the

deterministic dispersion of section 2.2 measured for finite final separations. We

study the statistics of ρ(τ ; rf ) ≡ r(τ) − rf + τδu(rf ; tf ). By doing so, we

effectively “remove” the effect of the Bachelor regime and expose a longer range

of τ 3 scaling. It is equivalent to consider only the integral term over δa(rf ; s)

in (2.4). It was numerically verified that the quantity 〈|ρ(τ ; rf )|2〉xf has the

asymptotic behavior〈
|ρ(τ ; rf )|2

〉
xf
≈

{
〈|r(τ)|2〉xf τ � τν
τ4

4
Sa

2 (rf ) τ . τν
. (2.17)

In Figure 2.2 we highlight the limiting cases given by (2.17). The inset shows
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the τ4

4
Sa

2 (rf ) scaling law up to τ ≈ τν as predicted analytically. In the main plot,

results rescaled by 4
3
〈ε〉xτ 3 are shown for eight different final separations rf ∈

[η, 20η] where η is the Kolmogorov length scale and TL is the large scale turn-over

time. The dispersion of the particles advected by the Brownian motion is in good

agreement with the deterministic separations and all the curves tend to converge

toward the stochastic dispersion. Defining grf = 〈|ρ(TL; rf )|2〉xf /〈ε〉xT
3
L, we

record these measured “Richardson constant” values in Table 2.1. The longest

τ 3 scaling (one decade) observed for deterministic dispersion is for |rf | = 6η and

g6η = 4/3 within numerical error. Note that in backwards setting, our measured

Richardson constant is larger than forward results (g ≈ 0.5, 0.52) [86, 10, 13]

and is in good agreement with the measurements in [88, 6, 36].

We have also numerically calculated the probability distribution functions

(PDF) P (ρ, τ), P (ρ̃, τ) for the deterministic ρ and stochastic ρ̃ where ρ ≡√
〈|ρ(τ ; rf )|2〉xfand ρ̃ =

√
E1,2

〈
|r̃(τ) +

√
2νδWt|2

〉
xf

. Figure 2.3 plots for τ = TL

the probability distributions with similarity scaling. The straight dashed line is

the Richardson PDF:

P (ρ, t) =
B

〈ρ(τ)2〉
exp

[
−A

(
ρ

〈ρ(τ)2〉1/2

)2/3
]
. (2.18)

All the curves are in good agreement with each others and Richardson for 0.4 .

Table 2.1: Values of grf
|rf |/η 4 6 8

grf/(4/3) 0.86± 0.10 0.99± 0.08 1.17± 0.02

|rf |/η 1 3 10 20

grf/(4/3) 0.50± 0.07 0.76± 0.01 1.24± 0.07 1.71± 0.05
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Figure 2.2: Particle dispersion 〈|ρ(τ ; rf )|2〉xf for eight different initial separa-

tions in pure DNS data compared to the dispersion for the stochastic advection
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〈ε〉xτ 3. The inset shows the same pure

DNS curves (without the stochastic case) rescaled by τ4

4
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2 (rf ).

(ρ/
√
〈ρ(τ)2〉)2/3 . 2. Note that L, the integral scale, we have(

L/

√
4

3
〈ε〉xT 3

L

)2/3

' 1.24 (2.19)

in our case. Particle separations beyond that limit are outside the inertial

range. Notice that the PDFs tends to spike above the Richardson PDF at small

ρ indicating strong intermittency at small scales.

Figure 2.4 plots the PDF for the stochastic advection model at seven different

times τ ∈ [0.023τν , 44.1τν ]. The probability distribution exhibits a clear self-

similarity behavior for 0 . (ρ/
√
〈ρ(τ)2〉)2/3 . 2 at all times. Note that even

though we effectively removed the dependency of the dispersion on the final

separation, the PDF is still not well described by Richardson (2.18) at large
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Figure 2.3: Pair separation PDF for eight different initial separations in pure
DNS data compared to the dispersion for the stochastic advection model with
similarity scaling. Infinite Reynolds self-similar PDFs are shown for Richardson
(straight dashed line).

scales (greater than 2 in similarity units) as the pairs are outside the inertial

range (see (2.19)).

2.5 Conclusion

We have investigated properties of backward dispersion for both deterministic

and stochastic particle passive tracers in a turbulent flow. This is the highest

Reynolds number investigation so far of backward 2-particle dispersion in tur-

bulence. We analytically predicted small time rms behavior for deterministic

backwards dispersion and investigated the τ 4-scaling law numerically. We also

looked at the convergence towards a long-time τ 3 scaling law of the backwards
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dispersion for different final separations. In addition, we developed a mathe-

matical formalism for studying backwards stochastic particle trajectories with

additive white noise. Using this formalism we derived a formula for the mean

dispersion and showed that the main contribution to this dispersion is an ex-

act 4/3〈ε〉xτ 3 term which was calculated analytically (Figure 2.1). We showed a

striking agreement between the deterministic and stochastic cases for long times

as all the dispersions seem to converge toward 4/3〈ε〉xτ 3 (Figure 2.2). There

has been previous attempts to derive an analytical value for the Richardson

constant [15] and it is the first time an exact t3 contribution is derived with a

simple numerical value for the Richardson constant in the backward case. Fi-

nally, we numerically computed the PDFs of particle separations in both the

deterministic and stochastic settings. In agreement with previous results for the
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forward case, the PDFs seem to be well described by Richardson probability dis-

tribution for the same similarity units range. As in the case of dispersion, the

stochastic and deterministic case are in good agreement in this range. Not only

does the 4/3〈ε〉xτ 3 persist for all times, the PDF of the stochastic dispersion is

self-similar for all times up to 2 (in similarity units).

There are a number of ways that the ideas in this work could be further pur-

sued. First, we find it theoretically appealing that energy dissipation – under

mild assumptions – can be related in a simple manner to the particle dispersion.

It would be interesting to probe the implications to the “zeroth law of turbu-

lence” from our framework. Next, in the present work, we make a particular

choice of the noise strength which seems to be privileged for the case of back-

wards particle dispersion. It would therefore be interesting to do a systematic

study of the effect of changing the noise strength on the squared separation and

probability distributions of the particles. It would also be of great interest to

use this formalism to – for example – predict features of multipoint statistical

observables [44]. In principle one could study these quantities by using stochas-

tic Lagrangian tracers and directly applying Itô calculus methods coupled with

numerics.
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Chapter 3

The Diffusion Approximation in
Turbulent Two-Particle
Dispersion

3.1 Introduction

L. F. Richardson, in a classic paper [83], initiated the study of dispersion of

particle pairs in turbulent flows, introducing a diffusion model with a scale-

dependent eddy-diffusivity. There has since been much discussion about the

accuracy of this description. In the case of advection by a Gaussian random ve-

locity field which is white-noise in time, the Kraichnan rapid-change model [62],

the diffusion approximation is known to be exact [41]. This fact has led to a

common idea that Richardson’s diffusion theory requires for its validity a quasi-

Gaussian velocity field that is nearly delta-correlated in time [41, 89, 12, 11].

Nevertheless, several numerical studies, including those in the previous chap-

ters, have shown that the key predictions of Richardson’s diffusion equation for

the pair-separation probability density, such as its self-similarity in time and the

precise stretched-exponential form, hold quite accurately in Navier-Stokes tur-

bulence over a range of separations 0.5−2 rms [9, 36, 11]. If Richardson’s theory
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required delta-correlated Gaussian velocities, then this would be quite puzzling,

because the statistics and time-correlations of the true turbulent velocities are

quite different. It is the purpose of this chapter to justify carefully the (limited)

applicability of Richardson’s diffusion theory to turbulent 2-particle dispersion.

Our approach also helps to explain deviations from Richardson’s theory and to

develop improved approximations, both topics of current interest [89, 12, 11].

3.2 An exact diffusion equation for turbulence

Let u(x, t) be the random turbulent velocity field and let xu(t; x0, t0) be the

fluid particle position that satisfies

d

dt
x(t) = u(x, t) (3.1)

and x(t0) = x0. Define also the Lagrangian fluid velocity

u(t|x0, t0) = u(xu(t|x0, t0), t).

Here u(t|x0, t0) is the velocity at time t of the fluid particle at x0 at time t0.

Define the “fine-grained PDF” of particle separations

Pu(r, t|x0, r0, t0) = δ3(r−Ru(t|x0, r0, t0)) (3.2)

with

Ru(t|x0, r0, t0) = xu(t|x0 + r0, t0)− xu(t|x0, t0)

the vector separation at time t of the two particles starting at x0 and x0 + r0

at time t0. The transition probability for 2-particle separations is given by

P (r, t|r0, t0) = 〈Pu(r, t|x0, r0, t0)〉 (3.3)
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where the average is over the random velocity field u.

Taking the time-derivative of (3.2) and using (3.1) it is a calculus exercise

to show that

∂tPu(r, t|x0, r0, t0) =

−∇r·
[(

u(t|x0 + r0, t0)− u(t|x0, t0)
)
Pu(r, t|x0, r0, t0)

]
. (3.4)

This equation may be rewritten in integral form as

Pu(r, t|x0, r0, t0) = δ3(r− r0)

−∇r·
∫ t

t0

ds
[(

u(s|x0 + r0, t0)− u(s|x0, t0)
)

×Pu(r, s|x0, r0, t0)
]
. (3.5)

Substituting (3.5) back into (3.4) gives

∂tPu(r, t|x0, r0, t0)

= −∇r·
[
(u(t|x0 + r0, t0)− u(t|x0, t0)) δ3(r− r0)

]
+∂ri∂rj

∫ t

t0

ds (ui(t|x0 + r0, s)− ui(t|x0, t0))

× (uj(s|x0 + r0, t0)− uj(s|x0, t0))

×Pu(r, s|x0, r0, t0). (3.6)

This is an exact equation for Pu(r, t|x0, r0, t0).

It remains to average over the random velocity field u. Assuming statistical

space-homogeneity,

〈u(t|x0 + r0, t0)〉 = 〈u(t|x0, t0)〉.

Thus, averaging the first term in (3.6) over u with r0 fixed gives a vanishing

result. Finally, using the definition of the conditional expectation

〈
A
∣∣∣R(s|x0, r0, t0) = r

〉
=

〈
APu(r, t|x0, r0, t0)

〉
P (r, t|r0, t0)

,
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and the fact that

(ui(t|x0 + r0, s)− ui(t|x0, t0))

× (uj(s|x0 + r0, t0)− uj(s|x0, t0))Pu(r, s|x0, r0, t0)

= (ui(t|x(s) + r, s)− ui(t|x(s), s))

× (uj(x(s) + r, s)− uj(x(s), s))Pu(r, s|x0, r0, t0) (3.7)

we see that averaging the second term in (3.6) gives

∂tP (r, t|r0, t0) = ∂ri∂rj

∫ t

t0

ds Sij(t; r, s|r0, t0)P (r, s|r0, t0), (3.8)

where Sij(t; r, s|r0, t0) is the following 2-time Lagrangian, conditionally-averaged

2nd-order structure function:

Sij(t; r, s|r0, t0) =
〈(
ui(t|x(s) + r, s)− ui(t|x(s), s)

)
×(

uj(x(s) + r, s)− uj(x(s), s)
)∣∣∣R(s|x0, r0, t0) = r

〉
(3.9)

An equivalent expression can be derived for the conditional Lagrangian

structure function in (3.9) by inserting
∫
d3x δ3(x − x(s)) = 1 inside the av-

erage and then changing the order of space-integral and expectation to obtain

Sij(t; r, s|r0, t0) =

∫
d3x P (x, s|x0, r0, t0; r, s)

〈
[ui(t|x + r, s)− ui(t|x, s)]

×[uj(x + r, s)− uj(x, s)]
∣∣x + r,x, s; x0 + r0,x0, t0

〉
, (3.10)

where P (x, s|x0, r0, t0; r, s) is the transition probability for a single particle start-

ing at x0 at time t0 to arrive at x at time s, conditioned on a second particle

starting at x0 + r0 at time t0 and arriving at x + r at time s.

The exact equation (3.8) (or (3.10)) can be rewritten as

∂tP (r, t|r0, t0) = ∂ri∂rj
[
K∗ij(r, t|r0, t0)P (r, t|r0, t0)

]
, (3.11)
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with

K∗ij(r, t|r0, t0) =

∫ t

t0

ds Sij(t; r, s|r0, t0)
P (r, s|r0, t0)

P (r, t|r0, t0)
. (3.12)

The equation (3.11) is not, of course, a diffusion equation (or even Markovian)

because the “diffusion tensor” (3.12) depends on the entire past history of the

separation PDF itself. However, the results (4.36),(3.12) imply that, for any

choice of initial r0, t0, there is a true Markov diffusion process which yields the

same evolution of the separation PDF P (r, t|r0, t0) for that particular r0, t0. In

this precise sense we have solved an “inverse problem” for 2-particle dispersion:

for any time sequence P (r, t|r0, t0), t > t0 of separation PDF’s we have found

a corresponding time-dependent diffusion tensor K∗ij(r, t|r0, t0), t > t0 which

exactly reproduces the PDF’s as the solution of a diffusion equation. If the

initial data are taken to be random with PDF P (r0, t0), then one can obtain an

analogous result by using

P (r, t) =

∫
ddr0 P (r, t|r0, t0)P (r0, t0)

to obtain from (3.8)

∂tP (r, t) = ∂ri∂rj
[
K∗ij(r, t)P (r, t)

]
, (3.13)

with

K∗ij(r, t) =

∫ t

t0

ds

∫
ddr0 Sij(t; r, s|r0, t0)P (r, s|r0, t0)

P (r0, t0)

P (r, t)
. (3.14)

In each case, we obtain an appropriate diffusion equation to reproduce the

PDF’s. Note that in case of isotropic turbulence the diffusion equation can be

simplified to a 1-D equation with the longitudinal component K∗L with

K∗ij(r, t) = K∗N(r, t)δij + [K∗L(r, t)−K∗N(r, t)]
rirj
r2

, (3.15)
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where K∗N is the normal component.

It is very important to emphasize that no assumption of short correlation

times was necessary to derive the diffusion equations (4.36) and (3.13), which

hold with very great generality. Our main thesis is that the (partial) validity

of Richardson’s diffusion approximation has its explanation in these results and

is not due to any short-time correlation property of turbulent velocity fields.

Indeed, as has been noted before (e.g. [41]), the natural correlation time of La-

grangian velocity increments (the eddy-turnover time ε−1/3r2/3) is of the same

order as the overall evolution time t − t0 in a Richardson t3-range. Thus, an

assumption of short time-correlations in turbulence is marginal, at best. Pre-

vious theoretical attempts by Kraichnan [59] and Lundgren [69] to derive the

diffusion equation from first principles (Navier-Stokes) have instead employed

a short-time correlation/Markovian assumption which, we will show, is directly

responsible for the overestimation of the Richardson’s constant by these theo-

ries.

3.3 Reasonable Approximations

We exploit the exact equation (3.8) for the transition probability P (r, t|r0, t0).

In Navier-Stokes turbulence the eddies are advected together with the particles

and the relative velocity of the pair should decorrelate on the slower scale of the

turnover-time of the smallest eddy that contains them. Since this set of eddies

remains the same for any velocity u of the pair, there should be no dependence

of the conditional average in (3.10) upon x− x0. In that case, we can integrate
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over x to obtain

Sij(t; r, s|r0, t0) = 〈δui(t|r, s)δuj(r, s)|r, s; r0, t0〉. (3.16)

Here δu(t|r, s; x) = u(t|x+r, s)−u(t|x, s) is the Lagrangian velocity increment

in label space. The considerable reduction in complexity of (3.16) compared

with (3.10) depends upon the nontrivial sweeping properties of Navier-Stokes

turbulence.

A straightforward simplification occurs for t− t0 � τr0 , where τr = r/δu(r)

is the eddy-turnover time at separation r. Taylor expansion about t = t0 in

(3.35) gives

∂tP (t) = (t− t0)∂ri∂rj
[
Sij(r0)δ3(r− r0)

]
+O((t− t0)2) (3.17)

with Sij(r) the usual velocity structure-function tensor. This is an exact result

to leading order for t − t0 � τr0 , corresponding to the Batchelor regime of

ballistic separation of particles [4].

Deeper simplifications occur in the long-time limit t − t0 � τr0 . Note that

the correlation function (3.16) is expected to decay in a time t − s of order

τr = r/δu(r), while the solution P (r, s) is expected to change at a slower rate.

For example, self-similar solutions of the type derived by Richardson have the

form P (r, t) = L−3(t)F (r/L(t)) with L(t) ∼ (t− t0)p for some power p, and no

dependence on r0, t0 at sufficiently long times. Since L(t)/L̇(t) = t − t0 ' t,

the time-scale for an order one change in P (r, t) is the current time t for any

r. Thus, one should be able to substitute P (r, s)/P (r, t) ' 1 in K∗ij(t, t0) for

those r with τr . t. This short-memory approximation yields a P -independent
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“diffusion tensor”

Kij(r, t; r0, t0) =

∫ t

t0

ds Sij(t; r, s|r0, t0), τr . t (3.18)

Note that this approximation is reasonable for separations r with a sufficiently

rapid decay of velocity correlations, but it does not assume delta-correlation in

time. Similarly, one can argue that the s-dependence through the conditioning

event in (3.16) is slow, and approximate

Sij(t, s) ' 〈δui(t|r, s)δuj(r, s)|r, t; r0, t0〉. (3.19)

inside the time-integral (3.18) defining K(t, t0). Kraichnan and Lundgren [59,

69] went further in their earlier derivations and assumed (implicitly) that the

s-dependence in Lagrangian particle labels also is slow. Taking u(x, s) =

u(s|x, s) ' u(s|x, t), u(t|x, s) ' u(t|x, t) = u(x, t) yields

SKLij (t, s) ' 〈δui(r, t)δuj(s|r, t)|r, t; r0, t0〉. (3.20)

The “diffusion equation” (3.11) with diffusivity Kij(t, t0) given by (3.18) is

valid in the short-time limit t − t0 � τr0 also, where it reproduces the exact

result (3.17). It is not Markovian in that limit, however, because the “diffusion

constant” (3.18) is dependent on r0, the separation at the initial time t0. There

is strong dependence upon r0 because (r − r0)/(t − t0) determines the relative

velocity v of the pair, which is nearly unchanging for short times. However, for

t − t0 & τr0 one can expect that the diffusivity becomes independent of r0, t0.

More specifically, one can argue that the conditioning on the event {r, t; r0, t0} in

the average (3.19) becomes irrelevant if r is a “typical” separation at time t, with

|r| ' 〈r2(t)〉1/2. That is, for such typical separations the restricted ensemble is
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representative of the entire ensemble and the average may be evaluated without

the condition:

Sij(t, s) ' 〈δui(t|r, s)δuj(r, s)〉, |r| ' 〈r2(t)〉1/2 (3.21)

We shall refer to this as the mean-field approximation, because it ignores

fluctuations effects in separation r (within the stated limits). Notice when the

Richardson law 〈r2(t)〉 ∼ εt3 holds, then the condition r . 〈r2(t)〉1/2 coincides

with the condition τr . t in (3.18) for τr = ε−1/3r2/3. However, in addition

to avoiding unusually large separations r � 〈r2(t)〉1/2 one must also in (3.21)

avoid unusually small separations r � 〈r2(t)〉1/2. Both of these conditions can

be expected to alter the statistics of velocity increments substantially. Notice

that a similar mean-field approximation may be made in (3.20), yielding the

Kraichnan-Lundgren (KS) formula for the eddy-diffusivity [59, 69]. In either

case, a Markovian diffusion equation is obtained for evolution of the probability

distribution of pair-separations in the range r ' 〈r2(t)〉1/2.

3.4 Comparison with Kraichnan and Lundgren

theories

Since our derivation is very closely related to that of Lundgren [69], it is worth-

while to point out the significant differences. The first steps of the derivation

are, in fact, identical. Like us, Lundgren employs a “fine-grained PDF” [his

eq.(2.7)] and his equation (2.6) is essentially the same as our equation (3.18).

However, from this point the derivations crucially deviate. In particular, Lund-

gren never obtained the analogue of our equation (3.19) which, when substituted
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back into (3.18) and averaged over velocity statistics yields our exact diffusion

equations. Instead, Lundgren’s argument—translated into our notations—was

to solve the equation

d

dt
Ru(t|x0, r0, t0) = u(t|x0 + r0, t0)− u(t|x0, t0)

by a formal integration

Ru(t|x0, r0, t0) = r0 +

∫ t

t0

ds [u(s|x0 + r0, t0)− u(s|x0, t0)],

and then substitute the latter into the analogue of our eqs.(3.2) and (3.4).

The results are Lundgren’s equations (2.6) and (2.10), which are exact but

not of the form of a diffusion equation. Lundgren only obtained a diffusion

equation [his equation (2.12)] by several subsequent approximations, including

Taylor-expansion of (coarse-grained) PDF’s which are assumed to be smooth

and—especially— a hypothesis of short-time correlations. Quoting directly from

Lundgren’s 1981 paper (p.31):

“It is now assumed that ∆t is larger than the correlation time of

the velocity field so that f(t−∆t) will be statistically independent

of the current time velocity, u(xj, t). ... If the velocity field had

vanishingly small correlation time, as for a Markoff process, they

would be statistically independent. It will be assumed that they are

approximately independent...”

It is one of the central points of this chapter that this hypothesis of short

time-correlations is both unnecessary to derive a diffusion equation and is also

physically incorrect for turbulent flow. As we show by our numerical work, this
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erroneous hypothesis leads to the over-prediction of Richardson’s constant by

the Kraichnan-Lundgren theory.

As a final note, our derivation makes fewer unnecessary assumptions than

that of Kraichnan and Lundgren, e.g. incompressibility is nowhere employed.

3.5 Numerical results

In order to test validity of the physical approximations and to obtain con-

crete, quantitative results, we may evaluate the theoretical formulas for eddy-

diffusivities derived above, both exact and approximate, using turbulence data

from numerical simulations. We here evaluate the Kraichnan-Lundgren [59, 69]

formula for the case of turbulence which is statistically stationary:

KKL

ij (r, t) =

∫ 0

−t
ds 〈δui(r, 0)δuj(s|r, 0)〉. (3.22)

This formula involves pairs of particle trajectories integrated backward in time

s from positions displaced by r at the current time 0. It thus requires space-

time data for turbulent velocity fields. We exploit here the JHU Turbulence

Database Cluster [67, 54], which provides online data over an entire large-eddy

turnover time for isotropic and homogenous turbulence at Taylor-scale Reynolds

number Reλ = 433. The integration of particle trajectories is performed inside

the database using the getPosition functionality [99]. Because of isotropy and

incompressibility, the diffusivity is fully defined by its longitudinal part KL(r, t)

as a function of r = |r|. The formula (3.22) is used directly for 4`ν < r < L, with

L the integral scale and lν the Kolmogorov scale, by averaging over N ∼ 6×109

particle pairs distributed throughout the flow domain and integrating in s by

the composite trapezoidal rule. For smaller r, spatial intermittency makes the
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Figure 3.1: KL(r, t) vs. r for 8 different times t = {0.02, 6.74, 13.46, 20.17,
26.89, 33.61, 40.33, 44.79}tν . The arrow indicates increasing time. Inset:
KL(r, t) vs. t for 6 values of r around r ∼ 5× 10−2L.

ensemble average converge slowly in N and we instead expand the velocity in-

crements in (3.22) to leading order in r to obtain KL(r, t) = λL(t)r2 with

λT (t) =
1

3

∫ 0

−t
ds〈∂ui

∂xj
(r, 0)

∂ui
∂xj

(s|r, 0)〉 (3.23)

and λL(t) = λT (t)/5 by incompressibility. Cf. [18]. Eq.(3.23) can be evaluated

accurately by averaging over only N = 2 × 104 single-particle trajectories and

the diffusivity for r > 4lν from (3.22) is then spline interpolated to the r → 0

result from (3.23).

Fig. 3.1 plots our results for KL(r, t) versus r, compensated by ε1/3r4/3, for 8

different times t ∈ [tν , TL], with tν the Kolmogorov time and TL the large-eddy

turnover time. The dashed portion of the curves show the interpolated range.

Error bars are calculated by the maximum difference between two subensembles

of N/2 samples. Both dissipation range scaling KL(r, t) ∝ r2 and short-time

Batchelor ballistic range scaling KL(r, t) ' SL(r)t, which follow analytically
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Figure 3.2: (Colors online) Particle dispersion 〈|r(t) − r0|2〉 for KL diffusion
model compensated by the Batchelor t2-law, with initial separations r0 = lν
(+), r0 = 2lν (◦), r0 = 3lν (.), r0 = 4lν (×), r0 = 6lν (�), r0 = 8lν (�),
r0 = 10lν (4), r0 = 20lν (O), r0 = 35lν (?). Inset: curves compensated by t3.

from (3.22), are observed. For large times the diffusivity converges to a r4/3

scaling law for r at the low end of the inertial range (r ∼ 5×10−2L). Because τr is

greater for larger r, one expects slower convergence at the upper end. The inset

of Fig. 3.1 shows the diffusivity as a function of time for 6 different r-values in the

range [3, 6.3]×10−2L. At late times, KL increases very slowly and in the inertial

range appears to approach at long times a Richardson diffusivity KL(r,∞) =

k0ε
1/3r4/3 with k0 = 1.47, comparable to Kraichnan’s LHDIA prediction k0 =

2.00 [59].

The diffusion model with KL(r, t) in Fig. 3.1 predicts results for pair disper-

sion 〈r2(t)〉 and PDF P (r, t) which may be compared with results from direct

numerical simulation (DNS) for the same turbulence database [36]. To solve

the diffusion equation we employ a standard Monte Carlo method [94], using
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N = 105 samples. We first consider pairs separated by various distances r0

at initial time t0 = 0. Fig. 3.2 for the dispersion 〈|r(t) − r0|2〉 exhibits a clear

Batchelor ballistic regime at times t� τr0 . The inset shows convergence toward

a t3 regime for times close to TL, with a Richardson constant g ' 4. The best

t3 range occurs for r0 = 4`ν (cf. [11]) but there is considerable scatter in the

values of g for different r0. It was found in the previous chapter and in [36] that

the Richardson t3-law is more well-defined for stochastic Lagrangian trajecto-

ries solving dx = u(x, t)dt +
√

2νdW(t) with an added white-noise, all started

at the same initial point. For such stochastic trajectories our diffusion model

must be modified (to leading order) by adding 2ν to the diagonal elements of

Kij(r, t). Fig. 3.3 plots Monte Carlo results for the dispersion 〈r2(t)〉 in this

modified diffusion model with r0 = 0, together with DNS results of [36]. The

early-time ∼ 12νt-law is reproduced very well by the diffusion model, followed

by a reasonable t3 range. However, the t3 power-law starts too soon and the

Richardson constant is g ' 4.4 ± 0.2 (see inset), much larger than the value

g ' 0.64 from DNS [36]. It is well-known that the KL formula when evaluated

by closures [59, 69] leads to a value of g which is an order of magnitude too large

[82]. Our results show that this defect is intrinsic to the KL theory, even when

their diffusivity formula (3.22) is evaluated by Navier-Stokes solutions, not by

uncontrolled closures.

To understand why, consider the two main assumptions which led to (3.22).

The mean-field approximation has no obvious systematic effect on the rate of

dispersion, but the short-memory approximation must increase the diffusivity.

Note indeed that the ratio P (r, s)/P (r, t) for s < t in the effective diffusivity

K∗ij(r, t) is < 1 at the peak of r4P (r, t) where most of the contribution to 〈r2(t)〉
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the fit to the diffusive regime. Inset: curves compensated by t3 (viscous units).

arises, under the normalization
∫
r2P (r, t) dr = 1. This can be checked for the

DNS results of [36] and it is a simple calculus exercise to prove for Richard-

son’s self-similar PDF P (r, t) = (B/〈r2(t)〉3/2) exp
[
−A(r/〈r2(t)〉1/2)2/3

]
, which

agrees well with the DNS. Thus, setting the ratio = 1 increases the diffusivity

near the peak. To check whether this effect can account quantitatively for the

excess diffusivity in KL theory, we reintroduce the ratio of PDF’s into the KL

formula, using P -values from [36]:

KKL∗
ij (r, t) =

∫ 0

−t
ds 〈δui(r, 0)δuj(s|r, 0)〉P (r, s)

P (r, 0)
. (3.24)

Monte Carlo results with N = 105 for this modified KL diffusivity are also

plotted in Fig. 3.3, showing a t3 regime with a reduced Richardson constant

g∗ ' 0.36 ± 0.02. We conclude that the overestimated dispersion in the KL

theory is mainly due to the neglect of memory effects.
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Although the short-memory approximation introduces some quantitative er-

rors, it and the other approximations we have made are expected to be quali-

tatively correct in the limited range of dispersions r ' 〈r2(t)〉1/2. To test this,

Fig. 3.27 plots P (r, t) with similarity scaling at three different times in the t3

regime for the diffusive model with KKL

ij (r, t) (using N = 106), the DNS re-

sults [36], Richardson’s self-similar PDF, and the self-similar PDF of KL theory

[59, 82]. All the results (different models and different times) collapse well in

the range [0.5, 1.6] of the similarity variable ρ = (r/〈r2(t)〉1/2)2/3, as expected.

It is also true that the DNS results agree better with Richardson’s solution over
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a longer range, while our KL diffusion model results agree best with the infinite

Reynolds-number KL similarity solution. Nothing should be concluded about

differences at ρ > 3.0, 2.1, 1.6 for the three times, resp., since these lie outside

the inertial range. However, differences inside those ranges must be due to the

additional approximation (3.20) in KL theory. We expect that a diffusion model

based instead on (3.21) should yield a more accurate result.

3.6 Exact Equation for PDF of Pair-Separation

& Relative Velocity

The approach developed for the particle separations, combining exact relations,

physically motivated approximations and numerical evaluation, can be exploited

also in frameworks that extend Richardson’s. An old idea [79, 68] is to consider

the joint transition probability P (t) = P (r,v, t|r0,v0, t0) of both the relative

position r and the relative velocity v of two Lagrangian particles, an approach

which has recently received renewed attention [12, 11]. In this case also it is

possible to derive exact evolution equations, which can be simplified by the

rational approximations presented in section 3.3 to obtain a simplified equation

∂tP + v·∇rP = ∂vi∂vj [Qij(t, t0)P (t)] with

Qij(t, s) =

∫ t

t0

ds 〈δai(t|r, s)δaj(r, s)|r,v, t; r0,v0, t0〉, (3.25)

a(x, t) = −∇p + ν4u + f is the Eulerian acceleration field for incompressible

Navier-Stokes and a(t|x, s) is the corresponding Lagrangian field. In deriving

these results, a short-memory approximation has been made analogous to that

in (3.18) and (3.19) . As has been long understood [79, 68] this approximation

is justified for a much greater range of positions (and velocities) than in (3.18)
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because the acceleration field is temporally correlated on the scale of the Kol-

mogorov viscous time τν = (ν/ε)1/2. For times t − t0 . τν , (3.25) implies a

velocity ballistic range in which 〈|v(t) − v0|2〉 ∝ t2. At longer times, it can be

expected that there is no dependence of the diffusivity Q upon r0,v0, t0, but

evidence has been presented in [12] that acceleration increments have strong

statistical dependence upon the instantaneous values r,v of relative positions

and velocities. This implies that the mean-field approximation is more limited

in this setting. The formula (3.25) provides a systematic framework within

which to explore these dependences and to exploit numerical simulation data to

develop a well-founded model.

Formally, the argument is quite similar to that presented in the previous

section for the PDF of pair-separation alone. Physically, however, the situa-

tion is quite different. As we shall see below, the derivation of the diffusion

equation and diffusivity in the form (3.25) uses much more essentially a short

time-correlation assumption for the Lagrangian acceleration increments. Fur-

thermore, as has long been realized [73, 68] this type of Markovian assumption

is far better justified for accelerations than it is for velocities.

We thus consider the Lagrangian acceleration

au(t|x0, t0) =
d2

dt2
xu(t|x0, t0) = a(xu(t|ξ, t0), t), (3.26)

where a(x, t) = (∂t + u(x, t) · ∇x)u(x, t) is the Eulerian acceleration field, and

define the fine-grained PDF

Pu(r,v, t; v0, t0|x0, r0, t0) = δ3(r− xu(t|x0 + r0, t0) + xu(t|x0, t0)) (3.27)

×δ3(v − u(t|x0 + r0, t0) + u(t|x0, t0)) δ3(v0 − u(x0 + r0, t0) + u(x0, t0))

63



We take the time derivative of (3.27) and we get

∂tPu(t) = −∇r · [vPu(t)]−∇v · [(a(t|x0 + r0, t0)− a(t|x0, t0))Pu(t)] (3.28)

where we employ the simplified notation Pu(t) = Pu(r,v, t; v0, t0|x0, r0, t0). Let

us also introduce the shorthand notation

Pu(r− v(t− s), s) ≡ Pu(r− v(t− s),v, s; v0, t0|x0, r0, t0) (3.29)

which allows us to integrate (3.28) formally as

Pu(t) = Pu(r− v(t− t0), t0) (3.30)

−∇v ·
[ ∫ t

t0

ds (a(s|x0 + r0, t0)− a(s|x0, t0))Pu(r− v(t− s), s)
]
.

The quantity Pu(r− v(t− s), s) has an interesting interpretation. Note that

Pu(r− v(t− s), s) = δ3(r− x̃u,s(t|x0 + r0, t0) + x̃u,s(t|x0, t0))

× δ3(v − u(s|x0 + r0, t0) + u(s|x0, t0)) δ3(v0 − u(x0 + r0, t0) + u(x0, t0))

where

x̃u,s(t|x0, t0) = xu(s|x0, t0) + u(s|x0, t0) · (t− s)

is particle position at time t linearly extrapolated from its position and velocity

at time s. Note as a special case for s = t0 that

Pu(r− v(t− t0), t0)

= δ3(r− r0 − v0(t− t0))δ3(v − v0)) δ3(v0 − u(x0 + r0, t0) + u(x0, t0))

64



We can now substitute (3.30) into (3.28) to obtain

∂tPu(t) +∇r · [vPu(t)] (3.31)

+∇v · [(a(t|x0 + r0, t0)− a(t|x0, t0))Pu(r− v(t− t0), t0)]

= ∂vi∂vj

[ ∫ t

t0

ds(ai(t|x0 + r0, t0)− ai(t|x0, t0))(aj(s|x0 + r0, t0)

−aj(s|x0, t0))Pu(r− v(t− s), s)
]
.

We average (3.31) over the ensemble of random velocity fields u to obtain

an equation for P (t) = 〈Pu(t)〉. The average of the first term on the right hand

side of (3.31) is

〈(a(t|x0 + r0, t0)− a(t|x0, t0))Pu(r− v(t− t0), t0)〉 (3.32)

= δ3(r− r0 − v0(t− t0))δ3(v − v0))〈a(t|x0 + r0, t0)− a(t|x0, t0)|v0, t0〉P (v0, r0, t0)

Note by integrating in time t that

〈(a(t|x0 + r0, t0)− a(t|x0, t0))|v0, t0〉 = 0, t ≥ t0 (3.33)

⇐⇒ 〈v(t)|v0, t0〉 = v0, t ≥ t0

Thus, a martingale property of the process v(t) = u(t|x0 + r0, t0) − u(t|x0, t0)

implies the vanishing of the first term. The process v(t) has long been compared

[73, 68] with a vector Brownian motion, e.g. its mean is zero and its covariance is

〈vi(t)vj(t)〉 = C〈ε〉δijt in K41 theory. This fact and the short time-correlation of

the Lagrangian acceleration make the martingale property plausible. Without

this assumption there would be an extra drift term in the final diffusion equation.
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Next note that

(ai(t|x0 + r0, t0)− ai(t|x0, t0))(aj(s|x0 + r0, t0)− aj(s|x0, t0)Pu(r− v(t− s), s)(3.34)

= (ai(t|x(s) + r− v(t− s), s)− ai(t|x(s), s))(aj(x(s) + r− v(t− s), s)− aj(x(s), s)

×Pu(r− v(t− s), s)

with x(s) = xu(s|x0, t0). Using this identity in the second term of (3.31), we

finally obtain after averaging

∂tP (t) + v·∇rP (t) = ∂vi∂vj

[ ∫ t

t0

dsRij(t; r,v, s|r0,v0, t0)P (r− v(t− s), s)
]
(3.35)

with

Rij(t; r,v, s|r0,v0, t0) =
〈(
ai(t|x(s) + r− v(t− s), s)− ai(t|x(s), s)

)
(3.36)

×
(
aj(x(s) + r− v(t− s), s)− aj(x(s), s)

)∣∣∣r− v(t− s),v, s; x0, r0,v0, t0

〉
.

Introducing the term
∫
d3x δ3(x− x(s)) = 1, this can be rewritten as

Rij(t; r,v, s|r0,v0, t0) = (3.37)∫
d3x P (x, s|x0, r0,v0, t0; r− v(t− s),v, s)

〈(
ai(t|x + r− v(t− s), s)− ai(t|x, s)

)
×
(
aj(x + r− v(t− s), s)− aj(x, s)

)∣∣∣x, r− v(t− s),v, s; x0, r0,v0, t0

〉
The standard definition of conditional probability

P (r,v, t|r0,v0, t0) = P (r,v, t; v0, t0|r0, t0)/P (v0, r0, t0)

shows that the transition probability also satisfies (3.35). To obtain the formula

for the diffusivity tensor in (3.25) we must finally use the short-time correlation

assumption for the acceleration to drop all terms of the form v(t− s).
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This result is for now only an analytical formula but it could be computed

using the similar techniques that in the previous subsection.

3.7 Conclusion

In this chapter we derived for the first time an exact diffusion equation for the

turbulence problem. In fact this formalism is not limited to applications to tur-

bulence physics but can be applied to any dynamical system in principle. We

then applied successive approximations to re-derive the diffusion equations by

Kraichnan and Lungdren making it clear which approximations are necessary to

arrive to their results. We showed that the assumption of short time-correlations

is unnecessary to derive a diffusion equation and is also physically incorrect for

turbulent flow. We numerically computed the diffusivity and realized this short

time-correlations hypothesis leads to the over-prediction of Richardson’s con-

stant by the Kraichnan-Lundgren theory. We derived a similar diffusion equa-

tion for the join probability distribution for both the separations and velocity

difference that might be better suited as a more accurate model for turbulence.

Our computations used the properties of isotropic turbulence that simplified

the problem to a one-dimensional diffusion problem. Although a diffusion equa-

tion for the joint probability distribution seems a better model, it is however

a much more complex problem because the simplifications related to isotropic

turbulence cannot be used here as we need to keep track of the angles between

r, v, r0 and v0. It would be a very challenging and interesting problem to try

to solve.
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Chapter 4

How sweeping effects in
synthetic turbulence suppresses
particle dispersion

4.1 Introduction

How particle pairs separate in a turbulent flow has been a central subject of

turbulence research since the classical work of Richardson [83]. Unfortunately,

the phenomenon has proved quite difficult to investigate by numerical solu-

tion of the fluid equations and by controlled laboratory experiments, especially

because of the very large Reynolds numbers required. Many studies have there-

fore employed “synthetic turbulence” or ensembles of random velocity fields

with some of the scaling properties of real turbulent velocities but which can

be efficiently sampled even for very long scaling ranges. For example, papers

[34, 47, 70, 28, 76] have followed this approach and have reported substantial

agreement of their numerical simulations with the predictions of Richardson,

including the famous “t3-law” for the growth in time of mean square pair sepa-

ration distances.

The validity of these results has been called into question, however. A paper
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of Chaves et al. [22] pointed out that the use of synthetic turbulence to model

Eulerian velocity statistics implies sweeping effects of large-scale eddies on par-

ticle motions that diverge with the Reynolds number. Those authors suggested

to employ synthetic ensembles such as Gaussian random fields to model instead

the turbulent statistics of Lagrangian velocities. In a simple one-dimensional

Gaussian model of Eulerian velocities they found analytically that large-scale

sweeping effects “localized” particle pairs and prevented them from separating.

Subsequently, in a very interesting paper [94], Thomson & Devenish have pro-

posed an intuitive picture how sweeping affects particle dispersion in synthetic

models of Eulerian turbulence. The key point is that large-scale eddies in real

turbulence advect both particles and smaller scale eddies, while large-scale ed-

dies in synthetic turbulence advect only particle pairs and not smaller eddies.

This fact implies that particle pairs at separations r in synthetic turbulence

should experience rapidly changing relative velocities, as they are swept into

new, statistically independent eddies. This occurs on a “sweeping” time-scale

τsw(r) ∼ r/v0, where v0 is the rms velocity set by the largest eddies in the

synthetic ensemble. Thomson & Devenish assume a diffusion process of pair

separations with an eddy-diffusivity K(r) ∼ δu2(r)τsw(r) and δu2(r) the mean-

square relative velocity at separation r. In an ensemble with Kolmogorov scaling

δu2(r) ∼ (εr)2/3, this yields dr2/dt ∼ K(r) ∼ ε2/3r5/3/v0 and the solution

〈r2(t)〉 ∼ ε4t6

v6
0

. (4.1)

Note that this implies considerably slower growth than Richardson’s t3-law 1.

1The two laws can be written as <r2(t)>Rich∼ L2(t/tL)3 and <r2(t)>TD∼ L2(t/tL)6 in
terms of the velocity integral scale L and the large-eddy turnover time tL ∼ L/v0, by using
ε ∼ v3

0/L. In their regime of validity t < tL, one has <r2(t)>TD � <r2(t)>Rich .
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Thomson & Devenish argued for the above prediction in the case of a large

mean sweeping, with v0 replaced by the mean speed u. In the case of a zero-

mean velocity ensemble, they argued instead for a t9/2-growth law, intermediate

between t3 and t6 (see our section 4.3 below). These predictions were supported

in [94] by the numerical technique of “Kinematic Simulations” (KS) [34, 47,

70, 28, 76]. The previous contrary numerical results were explained on various

grounds, e.g. the use of an adaptive time-stepping scheme in [34] which did not

resolve the small sweeping time τsw(r) and its effect on particle dispersion.

The issues raised by the paper of Thomson & Devenish have still not been

fully resolved. The numerical simulations in [94] used another form of adaptive

time-stepping, which was suggested in [81] to be responsible for the observation

of a t9/2 growth. Thomson & Devenish then repeated their simulations with a

fixed small time-step and reported the same t9/2 law [29]. The most recent simu-

lations of Nicolleau & Nowakowski [78] for their longest scaling ranges show some

evidence of the Thomson-Devenish sweeping effects, but the reported scaling

laws are intermediate between those of Richardson and of Thomson-Devenish

and agree with neither theory. Thus, there is still considerable uncertainty in

the literature regarding the validity of the Thomson-Devenish theory. The ques-

tion is important, because synthetic turbulence is a useful testing ground for

numerical and theoretical methods, and because comparison of particle disper-

sion in synthetic and real turbulence illuminates the physical mechanisms of the

latter.

Because of the disagreement of the numerical simulations of different groups,

it is useful to have analytic results. The Thomson-Devenish arguments apply to

a wide array of synthetic turbulence models, but Gaussian velocity ensembles
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are the most mathematically tractable. We therefore consider here the use

of Gaussian random fields as models of turbulent Eulerian velocities. More

precisely, we take the advecting velocity field u(x, t) to be a Gaussian random

field with mean u(x, t) and covariance Cij(x, t; y, s) = 〈u′i(x, t)u′j(y, s)〉 for the

fluctuations u′ = u− u. Specific models of interest are similar to those studied

in [22], with u(x, t) = u independent of space and time and with covariance

defined for 0 < α < 2, 0 < β < 2 by

Cij(x, t; y, s) = D2

∫
ddk e−D3k

β
L|t−s|

eik·(x−y)

kd+α
L

Pij(k). (4.2)

Here k2
L = k2 + 1/L2 and Pij(k) = δij − kikj/k

2 is the projection onto the

subspace of Rd orthogonal to k. The normalization constant D2 is of dimension

length2−α/time2 and D3 of dimension lengthβ/time. The Gaussian random field

u(x, t) so defined is statistically homogeneous in space, stationary in time, and

solenoidal. The length L is proportional to the integral length-scale. The scaling

properties of the model at scales smaller than L are similar to those of real

turbulence. For example, the single-time covariance for r � L is calculated to

be

Cij(x, t; y, t) ∼ D0L
α −D1r

α[(d+ α− 1)δij − αr̂ir̂j] +O(r2/L2) (4.3)

with r = x − y. See [39], p.686. Kolmogorov 1941 dimensional scaling corre-

sponds to the exponents α = β = 2/3. We shall consider also Gaussian velocity

models whose energy spectra coincide with KS models which have been stud-

ied numerically [94, 81, 29, 78]. The incompressibility of these models will be

used in an essential way, although much of our analysis applies to more general

models, e.g. with any degree of compressibility.
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The principal results are as follows. For a general Gaussian model of Eulerian

turbulence we carefully derive the diffusion approximation for pair dispersion

assumed in the argument of Thomson-Devenish [94], under the assumption of

short memory times for particle locations. We furthermore obtain a closed for-

mula, eq.(4.54), for the 2-particle eddy-diffusivity in a general Gaussian model.

For the specific models with covariance (4.2) we obtained more explicit results,

which, under the conditions α < 1 and either β < 1 or frozen turbulence

with D3 = 0, verify the Thomson-Devenish argument about sweeping decor-

relation effects. In particular, we obtain under these conditions a 2-particle

eddy-diffusivity tensor of the form Kij(r, t) = Sij(r)τ(r, t), where Sij(r) is the

structure-function tensor and τ(r, t) is an effective correlation time of veloc-

ity increments. Crucially, τ(r, t) is the minimum of the intrinsic turnover time

τeddy(r) at separation r, the overall evolution time t, and the sweeping time

r/v0. Although this result confirms the sweeping decorrelation effect, it leads to

a pair-dispersion law for zero mean-velocity ensembles at high Reynolds num-

bers different from the t9/2 suggested by Thomson & Devenish [94]. We show

that it gives rise to distinct ranges of power-laws t2, t1, t6 and then t1 again at

successively longer times, exactly as Thomson & Devenish argued for ensembles

with large mean velocities. We carry out careful numerical Monte Carlo simula-

tions with our diffusion model which verify these behaviors in the model at very

high Reynolds numbers. We also present Monte Carlo results for our diffusion

model at the moderate Reynolds numbers employed in current KS work, and

reproduce then both the “t3-law” and “t9/2-law” that have been reported in KS

at comparable Reynolds numbers. One possibility is that the current KS results

in the literature are not yet probing asymptotic regimes and the true scaling in
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KS at very high Reynolds numbers will be the same as in our diffusion model.

A more likely conclusion however, according to our current understanding, is

that the t6 law is an artifact of the Markovian approximation we employ and

the true scaling asymptotically for long inertial ranges is the t9/2-law proposed

by Thomson and Devenish (2005).

The detailed analytical derivation of diffusion models is presented in section

4.2 of the paper, and predictions for their dispersion laws discussed in section

4.3. Our numerical methods are described and validated in section 4.4 , and then

used to obtain results for mean-square particle separations and other statistics.

A concluding section 4.5 briefly discusses the results.

4.2 Derivation of the Diffusion Model

In this section we present the derivations of our main analytical results. A reader

who is only interested in physical conclusions and not the detailed justifications

may skip to our final formula (4.54) for the pair-diffusivity and the following

discussion.

4.2.1 Gaussian Integration-by-Parts Identity

We show first that the transition probability of particle pairs in Gaussian ve-

locity ensembles obeys an exact evolution equation, as a consequence of the

well-known integration-by-parts identity or Donsker-Furutsu-Novikov relation

(see [43], section 4.1). Let u(x, t) be the random turbulent velocity field and let

the fluid particle position that satisfies

d

dt
x(t) = u(x, t), x(t0) = a (4.4)
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be denoted as xu(a, t0|t), or x(a, t) for short. Define the “fine-grained PDF” of

2-particle positions as

P2,u(x2,x1, t|a2, a1, t0) =
2∏

n=1

δd(xn − xu(an, t0|t)). (4.5)

Then the PDF of 2-particle positions is given by

P2(x2,x1, t|a2, a1, t0) = 〈P2,u(x2,x1, t|a2, a1, t0)〉, (4.6)

where the average is over the random velocity field u.

Taking the time-derivative of (4.5) and using (4.4) it is a calculus exercise

to show that

∂tP2,u(t) = −
2∑

n=1

∇xn· [(u(xn, t) + u′(xn, t))P2,u(t)] , (4.7)

where the velocity has been decomposed into its mean and fluctuating part

u(x, t) = u(x, t) + u′(x, t). The average of the second term on the right-hand

side can be obtained using Gaussian integration-by-parts [43]

〈u′i(x, t))P2,u(t)〉 =

∫
ddy

∫
ds Cik(x, t; y, s)×

〈
δ

δuk(y, s)
P2,u(t)

〉
(4.8)

where Cij(x, t; y, s) = 〈u′i(x, t)u′j(y, s)〉. To represent the functional derivative

we introduce the Lagrangian response function

Gij(a, t; y, s) ≡
δxi(a, t)

δuj(y, s)
, (4.9)

so that

δ

δuk(y, s)
P2,u(t) =

2∑
m=1

−∂xjmP2,u(t) ·Gjk(am, t; y, s). (4.10)

The result of averaging (4.7) is the drift-diffusion equation

∂tP2(t) = −
2∑

n=1

∇xn· [u∗(xn, t)P2(t)]
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+
2∑

n,m=1

∂xin∂xjm [Dij(xn,xm, t, t0)P2(t)] . (4.11)

with

u∗(x, t) = u(x, t) + ∂xjDij(x,x
′, t, t0)|x′=x (4.12)

the mean velocity plus a fluctuation-induced drift, and with the diffusivity tensor

Dij(xn,xm, t, t0) ≡
∫ t

t0

ds

∫
ddy Cik(xn, t; y, s)

×〈Gjk(am, t; y, s)|x2,x1, t; a2, a1, t0〉 (4.13)

where

〈Gjk(am, t; y, s)|x2,x1, t; a2, a1, t0〉 =
〈Gjk(am, t; y, s)P2,u(t)〉

P2(t)
(4.14)

is the conditional average of the response function given that the two particles

start in locations a2, a1 at time t0 and end up at locations x2,x1 at time t.

We now develop a more useful expression for the response function (4.9).

It is straightforward to show by functional differentiation of the equation of

motion (4.4) that

∂tGij =
∂ui
∂xk

(x(a, t0|t), t)Gkj + δijδ
d(y − x(a, t0|t))δ(t− s). (4.15)

This equation may be solved as

Gij(a, t; y, s) =

{
gij(y, s|t)δd(y − x(a, t0|s)) t > s > t0
0 o.w.

(4.16)

with g(y, s|t) = Texp
(∫ t

s
dr ∂u

∂x
(x(a, t0|r), r)

)
the time-ordered exponential ma-

trix for the trajectory which satisfies x(a, t0|s) = y. This notation is made

natural by an alternative derivation of (4.16) based on the flow composition

identity

x(a, t0|t) = x(x(a, t0|s), s|t). (4.17)
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Taking the functional derivative δ/δuj(y, s) of (4.17) and using the chain rule

gives

δxi(a, t)

δuj(y, s)
=
∂xi
∂yk

(y, s|t)
∣∣∣∣
y=x(a,s)

δxk(a, s)

δuj(y, s)
. (4.18)

On the other hand, it is readily seen that the functional derivative of the integral

form of the particle equation of motion (4.4), gives

δxk(a, s)

δuj(y, s)
= δjkδ

d(y − x(a, t0|s))θ(s− t0). (4.19)

Thus, eq.(4.16) is rederived with gij(y, s|t) = ∂xi
∂yj

(y, s|t). If (4.16) is substituted

into the formula (4.13) it yields

Dij(xn,xm, t, t0) ≡
∫ t

t0

ds

∫
ddym Cik(xn, t; ym, s)

×〈gjk(ym, s|t)|x2,x1, t; ym, s; a2, a1, t0〉

×P (ym, s|x2,x1, t; a2, a1, t0) (4.20)

where P (ym, s|x2,x1, t; a2, a1, t0) is the conditional probability density of the

position of particle m at time s given the positions of both particles at times

t and t0. This formula for the diffusivity when substituted into (4.11),(4.12)

gives the final form of our exact evolution equation for the 2-particle transition

probability.

4.2.2 Markovian Approximation

Despite appearances, the evolution in the exact equation (4.11) is non-Markovian

in general. It is clear from formula (4.20) that the 2-particle diffusion matrix

is a function not only of the particle positions x1,x2 at time t, but also of the

positions a1, a2 at time t0. This dependence was suppressed in our notations,

but the evolution, in principle, retains a long-time memory of the initial condi-

tions. Only in special cases can the evolution be shown to be Markovian. The
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famous example is the Gaussian velocity field that is delta-correlated in time,

the so-called Kraichnan model [62, 41], for which

Cik(x, t; y, s) = Cik(x,y; t)δ(t− s). (4.21)

Substituting into (4.20) and using

gjk(ym, t|t) = δjk (4.22)

and

P (ym, t|x2,x1, t; a2, a1, t0) = δd(ym − xm) (4.23)

gives (with the “1
2

delta-function rule” for the upper limit of integration)

Dij(xn,xm, t, t0) =
1

2
Cij(xn,xm, t).

Thus, in this case rigorously there is no dependence of the diffusion matrix D on

a1, a2 and the well-known diffusion model is obtained [62, 41]. Another example

with Markovian particle evolution is the velocity field obtained as the super-

position of Gaussian random wave trains with very high frequencies, so that

the group velocity of the waves greatly exceeds the root-mean-square velocity

[2]. This example has direct relevance to KS simulations with “eddy-turnover

frequency” ωn = λ
√
k3
nE(kn) in the limit λ� 1 of large “unsteadiness” param-

eter.

The description as a diffusion should generally hold reasonably well if the

correlation time of the Gaussian velocity field is short enough, since the inte-

grand in (4.20) then becomes negligible at values of s < t for which there is

sizable dependence on a1, a2. With this motivation, we make the Markovian

approximation

Dij(xn,xm, t, t0) ≡
∫ t

t0

ds

∫
ddym Cik(xn, t; ym, s)
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×〈gjk(ym, s|t)|x2,x1, t; ym, s〉P (ym, s|x2,x1, t). (4.24)

The physical assumption is that for times ordered as t0 � s < t the position

of the particle at time s is determined mainly by its position at time t and is

negligibly dependent on the position at the initial time t0. The worst case for

this approximation is clearly the “frozen velocity” model with infinite correla-

tion time, when times s & t0 in the integral are not suppressed by decay of

correlations. Such s values give an undamped contribution also in general for

times t− t0 much smaller than the velocity correlation time. However, it is easy

to check that the exact result (4.13) [or (4.20)] and the Markovianized result

(4.24) both give

d

dt
Dij(xn,xm, t, t0) = Cij(xn, t; xm, t) +O(t− t0) (4.25)

so that, for t− t0 much smaller than the correlation time,

Dij(xn,xm, t, t0) = Cij(xn, t0; xm, t0)(t− t0) +O((t− t0)2). (4.26)

Thus the Markovian approximation becomes exact in this limit. We note in

passing that the Kraichnan-Lundgren theory of 2-particle dispersion [59, 69]

when applied to the Gaussian velocity ensemble gives a result almost identical to

the formula (4.24). As we discuss later, however, the Markovian approximation

is seriously deficient, except when the advecting random velocity field has time

correlations which are much shorter than the advecting sweeping time scale.

The formula (4.24) from the Markovian approximation can be further sim-

plified. It is intuitively clear that conditioning on the location of both particles

is superfluous in an average of a random variable that involves only one of these

particles. In fact, it can be easily established from the definitions (4.5),(4.6)
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that

P (y, s|x′,x, t) =

∫
ddy′ P (y′,y, s|x′,x, t)

=

∫
ddy′ 〈δd(y′ − x(x′, t|s))δd(y − x(x, t|s))〉

= 〈δd(y − x(x, t|s))〉 = P (y, s|x, t). (4.27)

A similar argument gives

〈gjk(y, s|t)|x′,x, t; y, s〉 = 〈gjk(y, s|t)|x, t; y, s〉. (4.28)

More generally, we may define the PDF

P (g, t; y′,y, s|x′,x, t) =

〈δd×d(g − g(y, s|t))δd(y′ − x(x′, t|s))δd(y − x(x, t|s))〉

(4.29)

and mimic the previous argument to show that

P (g, t; y, s|x′,x, t) = P (g, t; y, s|x, t). (4.30)

Then

P (g, t|y, s; x′,x, t) =
P (g, t; y, s|x′,x, t)
P (y, s|x′,x, t)

=
P (g, t; y, s|x, t)
P (y, s|x, t)

= P (g, t|y, s; x, t). (4.31)

It follows from these facts that

Dij(xn,xm, t, t0) ≡
∫ t

t0

ds

∫
ddym Cik(xn, t; ym, s)

×〈gjk(ym, s|t)|xm, t; ym, s〉P (ym, s|xm, t), (4.32)
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which is the final form of the Markovian approximation for the diffusion tensor.

We now consider the special case when the velocity field is statistically ho-

mogeneous in space. In that case, the drift velocity in (4.12) is independent of

x and simplifies to u∗(t) = u(t), due to homogeneity and incompressibility 2.

Furthermore, a simplified equation can be derived for the transition probability

of the 2-particle separation vector r = x2 − x1, defined by

P2(r, t|r0, t0) =

∫
dda P2(x + r,x, t|a + r0, a, t0)

=

∫
dda P2(x,x− r, t|a + r0, a, t0),

(4.33)

which is also independent of x. Since the diffusion tensor Dij(xn,xm, t) depends

only on the difference xn − xm in the homogeneous case, the equation (4.11)

with the substitutions r = x2 − x1 and

∇x2 −→∇r, ∇x1 −→ −∇r, (4.34)

yields the diffusion equation

∂tP2(r, t|r0, t0) = ∂ri∂rj [Kij(r, t, t0)P2(r, t|r0, t0)] , (4.35)

with the eddy-diffusivity tensor

Kij(r, t, t0)

= 2Dij(0,0, t, t0)−Dij(r,0, t, t0)−Dij(0, r, t, t0)

=

∫ t

t0

ds

∫
ddy Sik(r; y, t, s)× 〈gjk(y, s|t)|0, t; y, s〉P (y, s|0, t)

(4.36)

2This is the first point where we have invoked incompressibility.
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and we define the 2nd-order structure function of velocity increments at two

points 0,y and two times t, s :

Sik(r; y, t, s) = 〈[u′i(r, t)− u′i(0, t)][u′k(y + r, s)− u′k(y, s)]〉. (4.37)

If furthermore the velocity field is assumed to be statistically stationary in

time, then we can take t− t0 −→ t and t0 −→ 0, to obtain

∂tP2(r, t|r0, 0) = ∂ri∂rj [Kij(r, t)P2(r, t|r0, 0)] , (4.38)

with

Kij(r, t) =

∫ 0

−t
dτ

∫
ddy Sik(r; y, 0, τ)

×〈gjk(y, τ |0)|0, 0; y, τ〉P (y, τ |0, 0) (4.39)

by the change of variables τ = s− t.

4.2.3 Structure Function and One-Particle Distribution
Function

The integral over y in the above formula (4.39) converges at large y because

of decay in the two-point structure function and in the 1-particle transition

probability. Physically, rapid decay is due to the facts that increments separated

by great distances are uncorrelated and particles have low probability to be

swept to large distances. Both of these effects can be easily quantified.

To evaluate the two-point structure function, we use a standard identity

that expresses it in terms of the single-point 2nd-order structure function ([73],

p.102):

Sik(r; y, 0, τ) =
1

2
[Sik(y + r, 0, τ) + Sik(y − r, 0, τ)− 2Sik(y, 0, τ)] . (4.40)
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We first consider the single-time case with τ = 0. For the spatial power-law

covariance (4.3) with 0 < α < 2, the single-point structure function becomes

Sij(r) = 2 [Cij(0, τ)− Cij(r, τ)]|τ=0

∼ 2D1r
α [(d+ α− 1)δij − αr̂ir̂j] +O(r2/L2) (4.41)

for r � L. The formula (4.40) implies in general that Sik(r; y, 0, τ = 0) ∼ Sik(r)

for y � r, whereas in the particular case (4.41) it gives

Sik(r; y, 0, τ = 0) = O(r2/y2−α) (4.42)

for r � y � L. When y � L, there is generally exponential or fast power-law

decay, depending on the precise assumptions about the fall-off of the spec-

trum at low k. The 2-time structure function Sij(r; 0, τ) shows a similar be-

havior as the single-time structure function, except that there is a new length

Lβ(τ) = (D3|τ |)1/β with eddies smaller than this scale decorrelated by time

|τ |. As seen from (4.2), the decorrelation is associated to an exponential de-

cay of the cospectrum, with Lβ(t) acting as an effective “dissipation scale.”

Thus, Sij(r; 0, τ) scales ∝ r2 for r � Lβ(τ), while formula (4.41) holds for

Lβ(τ) � r � L. Thus, the decay law (4.42) is found when τ 6= 0 only for the

range of values max{r, Lβ(τ)} � y � L and is limited to times |τ | < Lβ/D3.

For y � max{r, Lβ(τ)} instead Sik(r; y, 0, τ) is independent of y and for y � L

the decay is again like that for τ = 0.

The 1-particle transition probability should be dominated by large-scale

sweeping and thus have the form

P (y, τ |0, 0) =
1

(2π)d/2vd0 |τ |d
exp(−|y − uτ |2/2v2

0τ
2) (4.43)
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to a good approximation, with v0 the root mean square velocity. We hereafter

consider mainly the case u = 0. For the Gaussian random field with mean zero

and covariance (4.2), v0 ∝ D2L
α. In that case, it has been verified by a formal

scaling analysis in [22], section 7, that the leading-order motion of particles for

large L is indeed ballistic with a constant, random velocity v = y/τ chosen

from a Gaussian ensemble with rms value v0. Subleading corrections were also

obtained in [22] to account for the effects of the change of the velocity in space

and time. Note that (4.43) decays rapidly for y � v0|τ |.

4.2.4 Stability Matrix

The most difficult term to evaluate in (4.39) is the conditional average of the

stability matrix g(y, τ |0). Existence of this matrix requires a short-distance

cutoff η on the “inertial-range” scaling behavior in the model covariance (4.2)

and (4.3), which otherwise corresponds to velocity fields only Hölder continuous

and non-differentiable in space. Even with the cutoff, the matrix g(y, τ |0) will

grow exponentially in |τ | almost surely, with rate determined by the leading

Lyapunov exponent λ ∝ (D1/η
2−α)1/2. It is thus far from clear a priori that the

conditional average even remains finite in the limit η → 0.

We begin by evaluating this term for the “frozen” velocity field with infinite

correlation time (or D3 = 0 in eq.(4.2)). A key observation here is that the

Gaussian transition probability (4.43) implies that particles are swept from point

y to 0 in time |τ | along straight lines with a constant speed v = y/τ generally of

order v0. The velocity-gradient field∇u(x, t) has a spatial correlation of order η,

so that the particle trajectories contributing in (4.39) will see a constant in space

but rapidly changing velocity-gradient with a correlation time ∼ η/v0. Thus, one
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can expect that the Lagrangian velocity-gradient will be well approximated by

the model of a Gaussian field that is delta-correlated in time, for which the

statistics of the stability matrix has been much studied.

To make this argument more formally, consider the spatial covariance of the

velocity-gradient in the frozen case Cij,mn(r) = 〈u′i,m(r)u′j,n(0)〉, where u′i,m =

∂u′i/∂xm. By twice differentiating (4.3) and then averaging over the direction of

the unit vector r̂, it is calculated to be

Cij,mn(r) = D′1r
α−2 [(d+ 1)δijδmn − (δimδjn + δinδjm)] (4.44)

with D′1 = D1α(α−2)
d

[
α−4
d+2

+ 2 + d
α−2

]
> 0 for d ≥ 2 and 0 < α < 2. This

covariance holds for r > η, whereas the covariance for r < η is essentially

constant and can be taken to be given by (4.44) with r = η. A particle swept with

velocity v will see a random velocity-gradient with temporal correlation obtained

by substituting r = vt in (4.44). Thus, the (Eulerian) velocity-gradients in a

Lagrangian frame can be taken as Gaussian with covariance

〈u′i,m(t)u′j,n(0)〉 = D′′1
ηα−1

v
δη(t) [(d+ 1)δijδmn − (δimδjn + δinδjm)] (4.45)

with D′′1 = 2
(

2−α
1−α

)
D′1 and δη(t) = 1

tη
∆( 1

tη
), for tη = η/v and

∆(t) =
1− α

2(2− α)
×
{

1 for |t| < 1
tα−2 for |t| > 1

. (4.46)

Since ∆(t) is integrable for α < 1 with
∫ +∞
−∞ dt ∆(t) = 1, one then has limη→0 δη(t) =

δ(t). It follows from these arguments that the velocity-gradient experienced by

the particle should be approximated by a Gaussian matrix-valued process, con-

stant in space and delta-correlated in time, if α < 1. This approximation could

break down for fixed η � L if there happens to be a small advection speed

v � v0.
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Now consider the non-frozen velocity field, with covariance given by (4.2)

and (4.3) for D3 6= 0. In this case the single-point, 2-time covariance of the

velocity-gradient averaged over directions has the form

Cij,mn(r = 0, τ) = D′1η
α−2e−D3|τ |/ηβ [(d+ 1)δijδmn − (δimδjn + δinδjm)] (4.47)

There is now a short correlation time tη = ηβ/D3, which allows us to write

〈u′i,m(t)u′j,n(0)〉 =
2D′1
D3

ηα+β−2δη(t) [(d+ 1)δijδmn − (δimδjn + δinδjm)] (4.48)

with δη(t) = 1
tη

∆( 1
tη

) for ∆(t) = 2 exp(−|t|). Thus, the single-point statistics

of the velocity-gradient becomes temporally delta-correlated for vanishing η. In

addition, there is the same decorrelation effect of rapid sweeping through space

that occurs in the frozen-field case. The latter will dominate when η/v � ηβ/D3

at small η and when the spatial decay of correlations is fast enough, that is, when

both β < 1 and α < 1. In any case, we obtain again a model for Lagrangian

velocity-gradients that are Gaussian, constant in space and delta-correlated in

time. There is here no problem with small speeds v � v0, since the correlation

time will never be larger than ηβ/D3.

The stability matrix has been well-studied for Gaussian velocity-gradient

fields, constant in space and white-noise in time. In particular, it has been

shown in [7] that the matrix random process g(y, τ |0) is a diffusion on the

group SL(d) of d× d matrices with determinant 1. We shall use specifically the

formula for the transition probability density pτ (g) of this process starting at

the identity, Eq.(7.14) in [7] for n = 2 :∫
SL(d)

pτ (g)f(gr0)dµ(g) =

∫
P2(r, τ |r0, 0)f(r) ddr (4.49)
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where µ is Haar measure on SL(d) and

∂τP2(r, τ |r0, 0) =M2P2(r, τ |r0, 0) (4.50)

for

M2f(r) = D[(d+ 1)δijr
2 − 2rirj]∂ri∂rjf(r)

= D∂ri∂rj
{

[(d+ 1)δijr
2 − 2rirj]f(r)

}
, (4.51)

where the second line follows by incompressibility. This implies also that the

operator is self-adjoint. SinceM2f ≡ 0 for a general linear function f(r) = a·r,

and considering in (4.49) arbitrary choices of a, r0, it follows that∫
SL(d)

g pτ (g) dµ(g) = I, (4.52)

the identity matrix. This result is due essentially to the fact that a diffusion

leaves invariant a linear profile. Finally, we can conclude that

〈gjk(y, τ |0)|0, 0; y, τ〉 = δjk. (4.53)

The exponential growth of the individual realizations is offset by their rapid

rotation in space which leads to large cancellations in the ensemble average.

Incompressibility was necessary to the argument.

The result (4.53) is only strictly known to be valid when the velocity covari-

ance converges to an η-independent result as η → 0, whereas (4.45) diverges

as ∼ ηα−1 for α < 1 and (4.48) diverges as ∼ ηα+β−2 for α + β < 2. However,

the final result (4.53) is independent of the amplitude of the covariance (i.e.

the value of D1) and thus we conjecture that it extends even to the present

cases with diverging covariance. The result yields a simplified formula for the
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2-particle eddy-diffusivity:

Kij(r, t) =

∫ 0

−t
dτ

∫
ddy Sij(r; y, 0, τ)P (y, τ |0, 0), (4.54)

together with (4.40),(4.43). We shall now use this formula to obtain concrete

results for the eddy-diffusivity in the Gaussian ensembles whose covariances are

given by (4.2).

4.2.5 The Frozen-in-Time Velocity Field

The simplest case to analyze is the “frozen” field so that

Sij(r; y, 0, τ) = Sij(r; y). (4.55)

Making the change of variables u = y2/2v2
0τ

2,∫ 0

−t
dτ P (y, τ |0, 0) =

1√
8πd/2

1

v0yd−1
Γ

(
d− 1

2
,
y2

2v2
0t

2

)
(4.56)

with the (upper) incomplete gamma function defined by Γ(s, z) =
∫∞
z
du us−1e−u.

Since ddy = yd−1dy dΩy, with dΩy the element of d-dimensional solid angle, we

get from (4.54) that

Kij(r, t) =
1√

2Γ
(
d
2

) ∫ ∞
0

dy

v0

Sij(r; y)Γ

(
d− 1

2
,
y2

2v2
0t

2

)
(4.57)

where the angle-averaged structure function is defined by

Sij(r; y) =
1

Sd

∫
dΩySij(r; y) (4.58)

for Sd = 2πd/2/Γ
(
d
2

)
the (d − 1)-dimensional area of the unit hypersphere in

d-dimensional space.
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When the velocity statistics are isotropic, as for the model with zero mean

and covariance (4.2), the eddy-diffusivity tensor can be reduced to two scalar

functions KL, KN defined by

Kij(r, t) = KL(r, t)r̂ir̂j +KN(r, t)(δij − r̂ir̂j). (4.59)

These two functions are related by incompressibility as KN = KL+rK ′L/(d−1)

and it is convenient to base further analysis on KL. As is well known, if the

separation statistics are also isotropic, then the diffusion equation (4.35) can be

expressed entirely in terms of KL, as

∂tP (r, t) =
1

rd−1

∂

∂r

(
rd−1KL(r, t)

∂P

∂r
(r, t)

)
. (4.60)

Here the separation PDF satisfies∫ ∞
0

P (r, t) rd−1dr = 1. (4.61)

as normalization condition.

The displacement vector y in (4.55) breaks rotation invariance, but the

average over solid angle restores isotropy. We can thus decompose also

Sij(r; y) = SL(r; y)r̂ir̂j + SN(r; y)(δij − r̂ir̂j) (4.62)

into longitudinal and transverse contributions with respect to the separation

vector r. By dimensional analysis one can write

SL(r; y) = SL(r)F

(
y

r
,
L

r

)
= SL(r)F

(y
r

)
, (4.63)

the latter for L� r. The function F (y/r) can be interpreted as the correlation

coefficient of (longitudinal) velocity increments δvL(r) at points a distance y
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apart. For the velocity covariance (4.2) with D3 = 0 it is possible to derive a

complicated, closed-form expression for the function F (w) as suitable combina-

tions of Gaussian hypergeometric functions of the argument w2. However, we

shall not pursue this here. The most important property of F, which follows

from (4.42), is

F (w) ∼
{

1 w � 1
(const.)w−(2−α) w � 1

. (4.64)

Thus, we can write KL(r, t) = SL(r)τ(r, t) where

τ(r, t) =
1√

2Γ
(
d
2

) ∫ ∞
0

dy

v0

F
(y
r

)
Γ

(
d− 1

2
,
y2

2v2
0t

2

)
(4.65)

is a 2-particle Lagrangian correlation time. With the substitution y = rw, this

becomes

τ(r, t) =
r

v0

J(x), x =
v0t

r
(4.66)

for

J(x) =
1√

2Γ
(
d
2

) ∫ ∞
0

dw F (w)Γ

(
d− 1

2
,
w2

2x2

)
(4.67)

For d = 3, Γ(1, z) = e−z and (4.67) is a Laplace transform in the variable w2.

The most directly useful consequence of (4.67) is the asymptotic behaviors

J(x) ∼
{
x x� 1
J∞ x� 1

, (4.68)

where we have used
∫∞

0
dv Γ

(
d−1

2
, v

2

2

)
=
√

2Γ
(
d
2

)
and we have defined

J∞ =
Γ
(
d−1

2

)
√

2Γ
(
d
2

) ∫ ∞
0

dw F (w). (4.69)

The latter integral converges for α < 1. We conclude that

τ(r, t) ∼
{
t t� r/v0

J∞
r
v0

t� r/v0
. (4.70)
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Our result is quite similar to that obtained by [94] for the case of large mean

velocity u; see their equation (8). Some differences are that our eddy-diffusivity

is isotropic and has the short-time behavior proportional to t. However, most

importantly we see the same sweeping decorrelation effect, with the 2-particle

correlation time at long times proportional to the sweeping time r/v0. With no

such effect one would instead expect the correlation time to be always propor-

tional to t in the frozen-field case. It should be emphasized that we obtain this

result in the zero mean-velocity ensemble, where [94] have predicted different

behavior. We shall compare our results with theirs in more detail in section 4.3,

where we shall also derive the quantitative predictions of our formula for the

growth of mean-square particle separations.

4.2.6 Finite Time-Correlated Velocity Field

We now study the Gaussian model with covariance (4.2) for D3 6= 0. More

generally, consider any velocity field statistically homogeneous in space and

stationary in time. Then (4.32) together with (4.43) & (4.53) give

Dij(x
′ − x, t) =

∫ t

0

ds

∫
ddy Cij(x

′ − y, t− s)

× 1

[2πv2
0(t− s)2]d/2

exp

[
−|y − x− u(t− s)|2

2v2
0|t− s|2

]
(4.71)

Since the y-integration has the form of a convolution, it is easily evaluated by

a Fourier transform:

D̂ij(k, t) =

∫ t

0

ds Ĉij(k, t− s)

× exp

[
ik·u(t− s)− 1

2
v2

0k
2(t− s)2

]
(4.72)

For the model in (4.2) note Ĉij(k, t) = Ĉij(k) exp(−γk|t|) with Ĉij(k) = D2Pij(k)/kd+α
L

and γk = D3k
β
L. For large u, see [94]. Hereafter we take u = 0. Then making
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the change of variables σ = v0k(t− s), one obtains

D̂ij(k, t) =
1

v0k

∫ v0kt

0

dσ Ĉij(k)

× exp

[
−
(
γk
v0k

)
σ − 1

2
σ2

]
(4.73)

Thus, for t� 1/v0k,

D̂ij(k, t) ∼ Ĉij(k)t. (4.74)

This implies by inverse Fourier transform that

Kij(r, t) ∼ Sij(r)t, t� r/v0. (4.75)

On the other hand, consider fixed t and large k. Note that the convection time

is smaller than the correlation time, or v0k > γk, for k > k∗ = (D3/v0)
1

1−β when

β < 1. Thus, for k � k∗, (4.73) gives

D̂ij(k, t) ∼
1

v0k
Ĉij(k) ·

√
π

2
erf

(
v0kt√

2

)
. (4.76)

This formula is exact in the case of frozen turbulence (D3 = 0) when k∗ = 0. If

furthermore k � 1/v0t, then

D̂ij(k, t) ∼
√
π

2
· 1

v0k
Ĉij(k) (4.77)

becomes independent of t and scales as a power k−(d+α+1). For α < 1, we thus

obtain by inverse Fourier transform that for r � min{v0t, L∗}

Kij(r, t) ∼
√
π

2

D
(α+1)
1

v0

rα+1 [(d+ α)δij − (α + 1)r̂ir̂j] . (4.78)

It follows that the essential behavior of the frozen field case carries over to the

finite time-correlated velocity with α < 1 and β < 1. Just as for the frozen
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velocity, KL(r, t) = SL(r)τ(r, t) and the correlation time satisfies (4.66) and

(4.68) with J∞ =
√

π
2

D
(α+1)
1

D
(α)
1

3.

If, however, β > 1, then the behavior is quite different. Under this as-

sumption γk > v0k for k > k∗, so that we now make the change of variables

σ = γk(t− s) to obtain

D̂ij(k, t) =
1

γk

∫ γkt

0

dσ Ĉij(k)

× exp

[
−σ − 1

2

(
v0k

γk

)2

σ2

]
(4.79)

Equations (4.74) and (4.75) again hold, now for t � 1/γk and t � 1/γ1/r,

respectively. On the other hand, for fixed t and k � k∗ = 1/L∗,

D̂ij(k, t) ∼
1

γk
Ĉij(k) [1− exp(−γkt)] . (4.80)

If furthermore k � 1/Lβ(t), then

D̂ij(k, t) ∼
1

γk
Ĉij(k) (4.81)

becomes independent of t and scales as a power k−(d+α+β). When α+β < 2, we

then obtain by inverse Fourier transform that for r � min{Lβ(t), L∗}

Kij(r, t) ∼
D

(α+β)
1

D3

rα+β [(d+ α + β)δij − (α + β + 1)r̂ir̂j] . (4.82)

We can again write KL(r, t) = SL(r)τ(r, t) but now

τ(r, t) ∼
{
t t� rβ/D3

(const.) r
β

D3
t� rβ/D3, r � L∗

. (4.83)

3Here the superscript in D
(α)
1 is used to indicate the spatial scaling exponent α for which

the constant in (4.3) is calculated. Using eqs. (2.14) and (2.16) in [39] to calculate D
(α)
1 gives

J∞ =

√
π

8

α

α+ 1

Γ
(

1−α
2

)
Γ
(

2−α
2

) Γ
(
d+α+2

2

)
Γ
(
d+α+3

2

)
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Thus, the sweeping decorrelation effect is absent at sufficiently small scales when

β > 1 and α + β < 2.

4.3 Consequences of Diffusion Model

In the previous section we have derived a diffusion model which, for homoge-

neous and isotropic statistics, takes the form (4.60). For the Gaussian velocity

ensemble having covariance (4.2) with Kolmogorov scaling exponent α = 2/3,

the diffusivity takes the form

KL(r, t) =
CLε

2/3r5/3

v0

J

(
v0t

r

)
∼

{
CL(εr)2/3t t� r/v0

C ′L
ε2/3r5/3

v0
t� r/v0

(4.84)

both in the frozen case and in the temporally fluctuating case with β = 2/3.

Here CL is the Kolmogorov constant in the longitudinal velocity structure func-

tion, SL(r) ∼ CL(εr)2/3, and C ′L = CLJ∞. J is defined by (4.67). In this section

we shall attempt to determine the growth law for the mean-square separation

〈r2(t)〉 predicted by the model (4.60),(4.84).

Does this model lead to the t9/2-law of Thomson-Devenish [94]? To answer

this question, we must briefly review the argument for the 9/2-law. The key idea

in [94] is that the mean-square separation pointwise in space depends on the local

value v′ of the fluctuating velocity. The sweeping effect occurs at points where

τsw(r) = r/v′ is smaller than the intrinsic correlation time, τint(r, t) = ε−1/3r2/3

for finite-correlated velocity (β = 2/3) and τint(r, t) = t for “frozen” velocity.

The local correlation time is argued to be the smallest of these:

τ(r, t) = min{τsw(r), τint(r, t)}. (4.85)

93



Hence, when v′ > (εr)1/3 (fluctuating) or r/t (frozen), then the mean-square

separation conditioned on v′ is affected by sweeping and shows the slow growth

〈r2(t)〉v′ ∼
ε4t6

v′6
(4.86)

but in the opposite case exhibits the faster growth

〈r2(t)〉v′ ∼ εt3. (4.87)

Using these growth laws to evaluate τsw and τint in (4.85), it is easily checked

that the t6-law holds for points with v′ > (εt)1/2 and the t3-law for points with

v′ < (εt)1/2. The probability for the latter condition to hold is small but growing

in time:

Prob
(
v′ < (εt)1/2

)
∼ (εt)3/2

v3
0

. (4.88)

This formula holds for a Gaussian distribution of 3D velocities v′, or for any

similar distribution p(v′) = (1/v3
0)f(v′/v0) with variance v2

0 and non-vanishing

density at the origin. The unconditional mean-square separation can then be

estimated from (4.87) and (4.88) as

〈r2〉 ∼ εt3 · (εt)3/2

v3
0

=
ε5/2t9/2

v3
0

. (4.89)

The same result can be obtained from the t6 dispersion law (4.86) by noting

that it is a rapidly decreasing function of v′, so that the dominant contribution

is obtained from the points with v′ & (εt)1/2 which also occur with probability

∼ (εt)3/2/v3
0.

At first sight, it appears that the model (4.60),(4.84) may embody these

ideas of [94]. The diffusion model implies the exact equation

d

dt
〈r2(t)〉 = 2

∫
KT (r, t)P (r, t)rd−1dr, (4.90)
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where KT = KL + (d − 1)KN is the trace of the diffusion tensor. The average

over r in (4.90) can thus play the same role as did the average over v′ in the

argument of [94]. The eddy-diffusivity (4.84) is equivalent to the correlation

time (4.70). The population of particle pairs with separations r > v0t should

exhibit a growth law 〈r2(t)〉> ∼ εt3, while the pairs with r < v0t should exhibit

〈r2(t)〉< ∼ ε4t6

v60
. It appears possible that averaging over the entire range of pair

separations could give rise to the 9/2-law (4.89) with an intermediate growth

rate.

The above reasoning is, however, essentially wrong. The diffusion model

(4.60),(4.84) does possess a t3 regime, but only in an unphysical way. To see

this, note that for both the t3 and the t6 growth laws the condition r > v0t is

first satisfied only at such long times that t > v2
0/ε. Substituting the standard

relation ε ∼ v3
0/L (which follows from the assumed Kolmogorov scaling of the

energy spectrum) implies that the t3 law can be self-consistently satisfied only

for times greater than a large-eddy turnover time, t > L/v0. In that case,

〈r2(t)〉 exceeds L2 and the particle pairs have left the inertial range. As we

shall verify below, the model (4.60),(4.84) does indeed possess a t3 range when

t > v2
0/ε but this exceeds the validity of the model, which was derived only for

the range r < L. In the range r > L the two particles should instead execute

independent Brownian motions with a constant diffusivity DT and the mean-

square separation grow diffusively as 〈r2〉 ∼ 4DT t. Thus, the t3 range is an

unphysical artefact of the model (4.60),(4.84).

The argument for the asymptotic t9/2 law by Thomson & Devenish [94] thus

fails for the model (4.60),(4.84). We shall show below that our diffusion model

can produce an apparent t9/2 law over a finite range of scales at relatively low
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Reynolds numbers, for similar choices of parameters with which such growth

laws have been observed in kinematic simulations [94, 29, 78]. In this case, the

eddy-diffusivity in the equation (4.60) is not given by the formula (4.84), which

is asymptotically valid only for L� r, but instead directly from the expression

(4.73), which holds in general. This suggests that the 9/2 growth law observed

in several kinematic simulations could be a finite-Reynolds-number effect and

may not represent the asymptotic behavior that would be observed with very

long inertial ranges.

We argue that the true high-Reynolds-number behavior in our diffusion

model is essentially the same as that found by Thomson & Devenish for the

situation of large mean velocity u ([94], section 3.1). The principal difference is

that we obtain also an early-time Batchelor ballistic range [4, 3] with t2 growth.

This is followed, as argued in [94], by ranges of diffusive t1 growth, t6 growth

and finally by a range of t1 or t3 growth, depending upon whether the correct

diffusivity (4.73) is used for that range or whether the r � L approximation

(4.84) is used (inappropriately, since r � L). We have not been able to find

an analytical solution of our model (4.60),(4.84) which exhibits all of the above

ranges. In this section we shall instead argue using a simple mean-field approx-

imation

d

dt
r2 = 2KT (r, t), r(0) = r0 (4.91)

which ignores fluctuations in the random separation r. In the following sec-

tion 4.4 we shall verify our theoretical conclusions by a numerical Monte Carlo

solution of the diffusion model.

The Batchelor t2 regime is the only one which we can derive directly from
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our diffusion model (4.60) without any approximation. We take as our initial

condition for the diffusion equation the spherical delta function

P0(r) =
δ(r − r0)

rd−1
0

(4.92)

with all pairs initially at separation r0. If this is substituted into the exact

equation (4.90), it yields

d

dt
〈r2(t)〉

∣∣∣∣
t=0

= 0,
d2

dt2
〈r2(t)〉

∣∣∣∣
t=0

= 2ST (r0) (4.93)

where the trace of the short-time result (4.75) was used,

KT (r, t) ∼ 2ST (r)t, (4.94)

for t� r0/v0. Taylor series expansion then gives

〈r2(t)〉 − r2
0 = ST (r0)t2 +O(t3), (4.95)

which is the well-known result of Batchelor [4, 3]. The mean-field approximation

(4.91) is exact in this regime, since sufficient time has not passed to change r

substantially from its initial (deterministic) value r0.

As noted in [94], there is an interval of times t > r0/v0 when r has still not

changed substantially from its initial value r0. For r ≈ r0 but t � r0/v0, the

result (4.94) is replaced with

KT (r0, t) ∼ KT (r0,∞) = C ′T
ε2/3r

5/3
0

v0

(4.96)

where C ′T = 14
3
C ′L as a consequence of incompressibility. The growth law then

becomes diffusive

〈r2(t)〉 − r2
0 ∼ 2KT (r0,∞)t, (4.97)

97



this period lasting until the “takeoff time” tto when KT (r0,∞)tto ∼ r2
0, or

tto ∼
v0r

1/3
0

ε2/3
. (4.98)

See [94]. Together with the previous Batchelor regime, this diffusive range is

obtained from the mean-field model (4.91) simplified to dr2/dt = 2KT (r0, t). It

is interesting that the diffusive behavior (4.97) at early times is the analogue

in the Kraichnan white-noise advection model [62, 41] of the Batchelor ballistic

range (e.g. see [36], section II.B). This is not an accident. The large-scale

sweeping of particle pairs through stationary eddies produces an effective small

correlation time r0/v0 which makes the velocity field appear to be temporally

white-noise for times t� r0/v0. This is closely connected with previous attempts

to simulate the Kraichnan white-noise ensemble by sweeping fixed large-scale

velocity fields rapidly across the computational domain [24, 45].

For times greater than the “takeoff time” tto but smaller than the “end-

of-sweeping time” tes = v2
0/ε, one must solve the mean-field equation (4.91)

with

dr2/dt = 2C ′T
ε2/3r5/3

v0

, (4.99)

which leads to the t6-law (4.1). Instead for t > tes one must solve

dr2/dt = 2CT (εr)2/3t, CT =
11

3
CL (4.100)

at least for the model (4.84). As previously discussed, this leads to the Richard-

son t3-law but in an unphysical way, since r > L lies outside the validity of the

model (4.84). For t > tes and r > L in reality KT (r, t) ∼ 2DT , where DT is the

1-particle diffusivity of Taylor [92]. Thus, one must solve

dr2/dt = 4DT (4.101)
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which yields the very long-time diffusive range.

Our diffusion model of particle dispersion in the zero-mean synthetic turbu-

lence ensembles thus yields a picture very close to that in the large mean-velocity

ensembles. This is in contrast to Thomson & Devenish [94], who obtain a dis-

tinct behavior of particle dispersion in the two cases. To understand better why

the model shows a different behavior, it is useful to rederive our results for the

eddy-diffusivity in a slightly different way. For convenience we consider only the

case of frozen velocity fields. Taking the longitudinal component of the formula

(4.54) yields

KL(r, t) =

∫ 0

−t
dτ

∫
ddy SL(r; y)P (y, τ |0, 0). (4.102)

As discussed in section 4.2.3 the factor P (y, τ |0, 0) arises as the density of the

Gaussian large-scale velocity v = y/τ. Changing to this variable in the above

integral yields

KL(r, t) =

∫
KL(r, t|v) exp

(
− v2

2v2
0

)
ddv

(2πv2
0)d/2

(4.103)

with

KL(r, t|v) = SL(r)τ(r, t|v) (4.104)

and

τ(r, t|v) =

∫ 0

−t
dτ F

(
v|τ |
r

)
∼
{
t t� r/v
I∞

r
v

t� r/v
(4.105)

for I∞ =
∫∞

0
dw F (w). Since F (v|τ |/r) is the correlation coefficient of increments

δu(r) at distance v|τ | apart, KL(r, t|v) and τ(r, t|v) can be interpreted as pair

diffusivity and correlation time for given large-scale velocity magnitude v. It

is easy to average these quantities over v and recover the previous results for

KL(r, t) and τ(r, t), in particular formula (4.70), and the results in this section
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for 〈r2(t)〉. It was already observed in [94] (section 3.2, p. 292) that averaging the

pair-diffusivity over the large-scale sweeping velocity would lead to the t6-law

also for the zero-mean velocity ensembles and the above results are consistent

with this conclusion. Thomson & Devenish argued, however, that correct results

should be obtained by averaging 〈r2(t)〉v rather than by averaging KL(r, t|v).

We should return to this point below.

4.4 Numerical Simulations

We now present numerical results for the diffusion models derived in the previous

sections, both to confirm our theoretical predictions of their behavior and to

obtain new conclusions where no analytical results are available.

4.4.1 Methods and Tests

As in [94], we shall solve the diffusion equation (4.38) using a Monte Carlo

method for the equivalent (Ito) stochastic differential equation

dri = bij(r, t)dWj(t), i, j = 1, ..., d (4.106)

where Einstein summation convention is used, Wj(t) is a vector Wiener process

and 2Kij = bikbjk, with lower-triangular square-root bij calculated by Cholesky

decomposition. We can integrate the stochastic equations (4.106) using the

standard Euler-Maruyama scheme:

ri(tk) = ri(tk−1) + bij(r, tk−1)
√

∆tNk,j i, j = 1, ..., d

tk = tk−1 + ∆t (4.107)

where Nk,j for j = 1, .., d, k = 1, 2, 3, ... is an independent, identically distributed

sequence of standard normal random variables. The normal random variables
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are obtained from uniform pseudorandom numbers generated by the Mersenne

Twister algorithm [71] which are then transformed to normal by the Box-Muller

method [17].

Unfortunately, the ranges of time that we must cover are so large that it

is completely impossible for us to use a constant timestep ∆t. Instead we use

an adaptive scheme similar to that of [94]. The stepsize is determined over

geometric intervals T (m) < t < T (m+ 1) with

T (m) = A exp(Bm) for m = 1, 2, ...,M. (4.108)

The choice for A, B and M is explained in Appendix A.1. In each such interval

we have

∆t = C∆min

(
r2

KT (r, t)
,∆T

)
(4.109)

where KT is the trace of Kij. C∆ is the main parameter accounting for the

size of the time step within the intervals T (m) < t < T (m+ 1). We performed

convergence tests for values of C∆ ranging from 1 to 10−6 to insure the quality

of the timesteping. The results of these tests are presented in Appendix A.2.

A large number S of independent samples of the process (4.106) are generated

with initial separations r(t = 0) = r0 uniformly distributed over a sphere of

radius |r0|, and statistics obtained by averaging over realizations. Most of the

results presented below used S = 104.

There is considerable debate in the literature, however, whether such adap-

tive time-stepping schemes lead to converged, unbiased results for the statistics

[94, 81, 29, 78]. To test our numerical methods, we found it useful to consider

somewhat simpler diffusion models where exact analytical results are available
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for comparison. The models with a power-law diffusivity

KL(r) = Drζ , 0 < ζ < 2 (4.110)

have been very well studied. It has been shown that the long-time evolution is

self-similar, with a dispersion law

〈r2(t)〉 ∼ g(Dt)2/γ, g =
γ4/γΓ

(
d+2
γ

)
Γ
(
d
γ

) (4.111)

and a stretched-exponential PDF

P (r, t) =
1

〈r2(t)〉d/2
exp

[
−α
( r

〈r2(t)〉1/2
)γ

+ β

]
(4.112)

where γ = 2− ζ,

α =

[
Γ((d+ 2)/γ)

Γ(d/γ)

]γ/2
, (4.113)

β = ln

[
γ(Γ((d+ 2)/γ))d/2

(Γ(d/γ))(d+2)/2

]
, (4.114)

with the normalization condition
∫∞

0
rd−1P (r, t)dr = 1. See [52], eqs.(3.14),(3.22)

and the general, self-similar solutions found in [39] for the case ` = 0 4. Inci-

dentally, note that the mean-field equation (4.91) leads to power-law growth

with the same exponent 2/γ as in (4.111) but with a different prefactor gMF =

(γ(d + ζ))2/γ than g. It is not hard to show that gMF > g, with gMF → g as

d→∞ from Stirling’s approximation.

Notice that the inertial-range model (4.84) reduces to the time-independent

diffusivity

KL(r,∞) = C ′Lε
2/3r5/3/v0, (4.115)

4The equations of [52] are unfortunately marred by several misprints
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as long as r � v0t. This is a special case of the power-law diffusivity (4.110)

with ζ = 5/3, or γ = 1/3, so that the mean-square separation grows as t6. This

case is thus most suitable to test our numerical methods. For the purposes of

comparison in the next section with the more complex model (4.84), we take

D = C ′Lε
2/3/v0 with C ′L = 1.262 and d = 3 so that

〈r2(t)〉 ∼ gPD6

ε4t6

v6
0

(4.116)

with the power-law diffusion model predicting gPD6
.
= 15.968. This model also

has the self-similar PDF of form (4.112) with d = 3, γ = 1
3
, so α

.
= 11.3714,

β
.
= 10.1767.

We now employ the numerical scheme discussed earlier to see which of these

exact results we can successfully reproduce. As we see in Fig. 4.1, long ranges of

perfect t6 power-laws can be obtained in log-log plots. Furthermore, Fig. 4.2 is

a semilog plot of the dispersion compensated by the analytical result (4.116). It

shows that the prefactor gPD6 is reasonably well calculated by our Monte Carlo

for choices of the constant C∆ equal or smaller than 0.1. Finally, Fig. 4.3 shows

the logarithm of the PDF of pair separations r plotted versus r1/3 at 14 different

times in the long t6-range. Self-similarity is well confirmed by the collapse of

rescaled curves for different times, and the analytical result (4.112) is accurately

reproduced up to almost 16 rms values of the separation.

Our conclusion from these exercises is that the adaptive time-stepping scheme

should be adequate for exponents of dispersion power-laws, and even for prefac-

tors and PDF’s with good accuracy. Since the primary issue in this work is the

exponents, we shall employ the adaptive schemes when necessary to cover ex-

tensive ranges where constant time-steps are unfeasible. As additional checks on
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Figure 4.1: Monte Carlo results for 〈|r(t)|2〉 in the power-law diffusion model
(4.115) with S = 104 and C∆ = 1.

our numerical results for exponents from adaptive schemes, we test for conver-

gence using constants C∆ ranging from 1 to 10−6. We also compare our Monte

Carlo results for the diffusion equation with a separate numerical solution of

the mean-field equation (4.91), integrated with a Fortran 90 implementation

of the Watt and Shampine RKF45 ODE solver [19, 90]. This standard ODE

integration method is also adaptive, but with variable time-step determined by

preselected error tolerances. We therefore can have confidence that the numer-

ical results for the mean-field theory are well converged.
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Figure 4.2: Monte Carlo results for 〈|r(t)|2〉 in the power-law diffusion model
(4.115) with S = 104 and various C∆, compensated by the analytical result
(4.116).

4.4.2 The Inertial-Range Model

We consider first the model (4.84) obtained for Kolmogorov scaling exponents

in the limit L � 1 and thus physically applicable only for separations r in the

inertial range of scales. This diffusion model applies for both the frozen velocity

case and the finite-time correlated case (since β = 2/3 < 1). For the purpose of

simplifying the numerical work, we opted not to use the exact scaling function

J(x) given by integral (4.67), which in three dimensions yields a complicated

expression in terms of generalized hypergeometric functions. Instead, we built

a function with the same asymptotic behaviors (4.68) as the true J(x). We took

J(x) = J∞erf(λx) =

{
x x� 1
J∞ x� 1

(4.117)
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Figure 4.3: Logarithm of the rescaled PDF of pair-separations at 14 different
times in the t6 range, for the power-law diffusion model (4.115). Monte Carlo
results for S = 105 and C∆ = 1. The straight line marked with circles (◦) is the
analytical result (4.112) for d = 3 and γ = 1/3.

with λ =
√
π

2J∞
and J∞ =

√
π
2

D
(5/3)
1

D
(2/3)
1

.
= 0.6396. Our expectation was that only

these general features should be sufficient to observe the scaling regimes pre-

dicted in the previous section. This idea was borne out by the numerical re-

sults. In Fig. 4.4 we plot 〈|r(t) − r0|2〉 for the inertial-range diffusion model

with r0 = 10−20. On the same graph we plot for comparison the numerical

solution r2(t) − r2
0 of the mean-field equation (4.91). The two agree very well,

and clearly exhibit the four predicted regimes with power-laws ∝ t2, t1, t6 and

t3, successively. A convergence analysis of our adaptive scheme for these results
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Figure 4.4: Numerical results for 〈|r(t)−r0|2〉 in the inertial-range model (4.84):
Monte Carlo solution of the diffusion equation (◦) with C∆ = 1, S = 104 and
mean-field approximation (–).

is presented in Appendix A.

To further test the theoretical predictions, we investigate the crossover times

between the different regimes and the prefactors of the scaling laws. For exam-

ple, in Fig. 4.5(a) we show for various values of r0/L the quantity 〈|r(t)− r0|2〉

compensated by the Batchelor-range prediction 11
3
CL(εr0)2/3t2 plotted versus

the time t/τsw rescaled with the sweeping time τsw = r0/v0. The Batchelor pre-

diction fits the Monte Carlo data to within 0.13% relative error and the end

of this regime is very close to t/τsw = 1. We similarly show in Fig. 4.5(b) for

the same choices of r0/L the mean-square separation 〈|r(t)− r0|2〉 compensated
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Figure 4.5: Monte Carlo results for 〈|r(t) − r0|2〉, C∆ = 0.1, S = 104. Each
panel shows the same curves with different scalings. (a) Batchelor regime. (b)
Kraichnan regime. (c) t6 regime. (d) Richardson regime. The initial separations
are r0/L = 10−5(◦), 10−8(�) , 10−11(.), 10−14(O), 10−17(�), 10−20(/).
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by the Kraichnan-like “diffusive-range” prediction 14
3
C ′Lε

2/3r
5/3
0 t plotted versus

t/tto with the “takeoff time” tto given by equation (4.98). The diffusive-range

prediction is verified with a 1.8% error and the end of this regime quite con-

vincing scales as ∼ 10−2tto. In Fig. 4.5(c) we show the corresponding plot of

mean-square separation compensated by ε4t6/v6
0 versus t/tto. We see that a t6

range begins at time ∼ 102tto and extends to the end-of-sweeping time tes = v2
0/ε

with a prefactor gMC
6 ' 15.97 of the t6-law. This Monte Carlo value is equal

within numerical errors to the exact value gPD6 for the power-law diffusion model

(4.115). It is interesting that the transition between the t1 and t6 scaling ranges

is quite broad, covering about four decades. We show finally in Fig. 4.5(d) the

mean-square separation compensated by the Richardson prediction εt3 plotted

versus t/tes. For t > tes there is a clear t3 regime with Richardson constant

gMC
3 ' 9.00. This value agrees very well with the exact constant for a self-

similar diffusion model with diffusivity KL(r, t) = CL(εr)2/3t and CL = 1.9636.

Of course, as emphasized earlier, this entire regime of the inertial-range diffusion

model is unphysical and will not be observed in KS model simulations.

4.4.3 Comparison with KS Models

Our derivation of diffusion model approximations was sufficiently general that

we can consider cases of more direct relevance for KS simulations, with any

energy spectrum and without the approximation of large L. Using the formula

(4.76), which is exact for frozen turbulence, one obtains by inverse Fourier

transform in 3D that

Dij(r, t) =

√
π

2

∫
Ĉij(k)

v0k
erf

(
v0kt√

2

)
eik·r d3k. (4.118)
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It is convenient to assume statistical isotropy, so that

Ĉij(k) =
E(k)

4πk2
Pij(k), (4.119)

where Pij(k) is the projection operator onto the subspace orthogonal to k. The

trace of the diffusivity tensor becomes

DT (r, t) =

√
2π

v0

∫ ∞
0

dk

k
E(k)erf

(
v0kt√

2

)
sin(kr)

kr
(4.120)

and DL(r, t) can be recovered from

DL(r, t) =
1

rd

∫ r

0

DT (ρ, t) ρd−1dρ.

Finally, the diffusivity that appears in equation (4.60) is

KL(r, t) = 2(DL(0, t)−DL(r, t)).

To apply these results to the KS models [94, 81, 29, 78], let us recall that

those models have a discrete set of wavenumbers distributed as

kn = k1

(
kN
k1

) n−1
N−1

, (4.121)

for n = 1, ..., N where k1 = 2π/L, kN = 2π/η and η is the analogue of the

Kolmogorov dissipation length. The energy spectrum generally adopted in these

models is

E(k) = CKε
2/3

N∑
n=1

k−5/3
n δ(k − kn)∆kn (4.122)

where ∆kn = (kn+1 − kn−1)/2 and CK = 1.5 is the Kolmogorov constant, so

that CL
.
= 1.973 5. Here ε is a constant with dimensions of energy dissipation

5The standard formula CL = 2π
(3+α)Γ(2+α) sin(πα/2)CK relates the constants CL, CK for

a k−(1+α) power-law spectrum; e.g. see [73], eq.(13.100). This leads to CL
.
= 1.9727 and

C ′L = CLJ∞
.
= 1.262, the choice of the previous two subsections.
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per mass chosen to prescribe values of the rms velocity:

v0 =

√
2

3

∫ kN

k1

E(k)dk. (4.123)

The formula (4.120) with the KS spectrum (4.122) yields

DT (r, t) =
CKε

2/3

v0r

√
2π

N∑
n=1

erf
(
v0knt√

2

)
k

11/3
n

sin (knr) ∆kn (4.124)

The assumption of isotropy in this formula is only approximately valid for KS

simulations. It would be possible to use the general result (4.118), without as-

suming isotropy, which would lead to a discrete sum over wavevectors rather

than wavevector magnitudes. However, this would make numerical implemen-

tation a bit more difficult, without essentially different physics.

We now present simulation results for diffusion models based on Gaussian

velocity fields with the spectra of KS models, or, to be brief, “KS diffusion

models” . The same Monte Carlo method was employed as for the inertial-

range model. In all of our numerical studies we take v0 = L = 1. We tried

various values for the number of modes N and we found that the numerical

results on dispersion laws in log-log plots for N & 100 are not significantly

different (see Appendix B). All of our presented results are for N = 500, a

comparable number to that in the KS studies [94, 81, 29, 78]. We have also

followed the practice in the KS literature of choosing the smallest length-scale

η = r0/10, for initial separation r0. We have checked that taking η < r0/10

leads to identical results. We have done no systematic study of the opposite

case η > r0/10, with particles starting in the “dissipation range”, when an initial

regime of exponentially rapid separation would be expected.
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Our first set of numerical experiments investigated whether these more re-

alistic models would exhibit the power-law scaling ranges predicted in section

4.3, with a kN/k1 sufficiently large. In Fig. 4.6 we plot the numerical results

for the mean-square separation 〈|r(t) − r0|2〉 obtained from the KS diffusion

model with r0 = 10−20. We observe very clearly the predicted ranges with

power-laws t2, t1, t6 and, lastly, the diffusive t1 range at long times expected for

a model with finite L. For comparison, we also plot numerical solutions of the

mean-field equation (4.91) using the diffusivity (4.124). As before, the mean-

field theory predictions are quite close to the full Monte Carlo solution of the

diffusion model. Lastly, we plot the solution of the mean-field equation for the

inertial-range large-L diffusivity, with the same choice of constants L, v0 and ε.

As expected, the dispersion law from this approximation agrees quite well with

that of the KS diffusion model for r < L, but predicts a spurious t3 power-law

range for r > L. The good agreement justifies a posteriori our simplification of

the scaling function J(x) in section 4.4.2. Our general conclusion from this set

of experiments is that the KS diffusion models should exhibit the above four

scaling ranges with successive power-laws t2, t1, t6 and then t1 again, whenever

the scale ratio kN/k1 is sufficiently large.

In order to discriminate between various alternative theories, it is useful

to compare predictions not only for mean-square separations but also for the

full probability density P (r, t). In Fig. 4.7 we plot the Monte Carlo proba-

bility distribution calculated for 23 different times spread within the t6 range.

These are rescaled to test for self-similarity and collapse quite well. It should

be emphasized that the overall evolution of our IR and KS diffusion models
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Figure 4.6: Numerical results for 〈|r(t)−r0|2〉 in the KS diffusion model (4.124),
kN/k1 = 1021: Monte Carlo solution of the diffusion equation (◦) with C∆ =
1, S = 104 and mean-field (–). Also MC results (· · · ) for inertial-range model
(4.84).
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times in the t6 range, for KS diffusion model with kN/k1 = 1021. Monte Carlo
results for S = 104 and C∆ = 1. The straight line marked with circles (◦) is the
analytical result (4.112) for d = 3 and γ = 1/3.

114



is not self-similar, globally in time. This can be seen most clearly in the ex-

istence of time ranges with distinct power-law growth laws, whereas a truly

self-similar evolution should have just one power-law. In a sufficiently long t6

range, however, one should expect a self-similar evolution. For example, the

inertial-range model (4.84) in the t6 range reduces to the time-independent dif-

fusivity KL(r,∞) = C ′Lε
2/3r5/3/v0, except for r � v0t. Since r ∼ v0t is nearly

the maximum particle separation that can be achieved in the time t, only a very

tiny large-r tail will experience a different eddy-diffusivity than this. In Fig.

4.7 we also compare the Monte Carlo results for the KS diffusion model with

the exact parameter-free predictions (4.113),(4.114) of the power-law diffusion

model (4.110) for d = 3 and ζ = 5/3. The agreement is reasonably good. The

curves collapse to a straight line with the stretching exponent 1/3 but with a

slightly steeper slope than the power-law diffusion model. This suggests that

if our Monte Carlo could be carried out for a sufficiently long t6-range, then

the PDF would approach the exact self-similar form of the power-law diffusion

model.

We have speculated that the growth laws of the KS models themselves,

asymptotically for kN/k1 � 1, may be the t2, t1, t6 and t1 powers that we have

found in the KS diffusion models. Can this be reconciled with the t9/2 law

predicted in [94] and verified to greater or lesser extent in subsequent KS sim-

ulations [94, 29, 78]? It is possible that the observed t9/2 is an artifact of the

modest kN/k1 ratios achieved in these simulations, which tends to “blend” the

distinct scaling ranges, in particular the early-time t1 and t6 ranges, between

which lies a broad transition zone. In support of this argument, we have per-

formed a sequence of Monte Carlo simulations of the KS diffusion model with
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scale ratios kN/k1 = 103, 104, 105, 106. The last ratio is chosen to correspond

roughly to that employed in the previous KS simulations [94, 29, 78]. Because

the range of time-scales is not so great, we have been able to carry out the

time-integration not only with the adaptive algorithm employed up until now,

but also with a constant time step ∆t = 0.1 η
v0

which resolves the effects of even

the smallest eddies, equivalent to that used in recent KS simulations [29, 78].

The results of the two time-advancement schemes for the dispersion curves are

identical when plotted in log-log. As illustrated in Fig. 4.8, a t9/2 regime seems

to appear as we increase the ratio kN/k1. This figure should be compared with

Fig. 2 of [29] and Fig. 1 of [78], which it matches very closely. Although we see

a similar “t9/2-range” at the values of kN/k1 used in previous KS simulations,

covering 1-2 decades in time, it is clear from our results in Fig. 4.6 that this

is only a transitional regime of the KS diffusion model. In fact, for the case

kN/k1 = 106 which shows the long “t9/2-range” we find tto
.
= 10−2 and thus the

broad transition zone between the t1 and t6 laws covers the interval from 10−4 to

100. This includes all of the apparent “t9/2-range”. If we go to kN/k1 = 108, the

power-law steepens into a t5-law. At still larger values of kN/k1 four asymptotic

scaling ranges emerge, with distinct power-law scalings of t2, t1, t6 and t1. It is

conceivable that the same is true of the KS models themselves at sufficiently

large kN/k1, but we shall argue for a different resolution below.

Finally, we note that for kN/k1 < 104, the short range of superdiffusive

growth of dispersion approximates a t3-law. This agrees with the observations

of [81, 78] for KS models. Note, however, that the physics is completely different

from turbulent Richardson diffusion, which would allow t3 ranges of arbitrary

extent. In fact, the narrow range of such a power-law in our KS diffusion model
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Figure 4.8: Monte Carlo results for 〈|r(t)|2〉 in KS diffusion model for various
values of kN/k1, with ∆t = 0.1 r

v0
, S = 104.

arises only because of the “merging” of many distinct ranges. In particular,

the exponent of the apparent power-law must decrease with decreasing kN/k1

to match the t1-law starting at r = L, until finally the superdiffusive range

disappears entirely when kN/k1 ≈ 1.

4.5 Discussion

We have derived in this chapter a diffusion equation for particle-pair dispersion

in synthetic Eulerian turbulence modelled by Gaussian velocity ensembles. The
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main analytical result is the formula (4.54) for the 2-particle diffusivity and

its special cases (4.66) for frozen velocities and (4.76) for finite time-correlated

velocities. Although the description of pair-dispersion as a diffusion process is

not exact (except in certain limiting cases), it arises from a well-motivated set

of analytical approximations. Most importantly, our results confirm the physi-

cal argument of Thomson & Devenish [94] that pair-dispersion in such models

is fundamentally altered by sweeping decorrelation effects, not experienced by

particle pairs in hydrodynamic turbulence. Thus, the t3-law observed in previ-

ous simulations with synthetic turbulence [34, 47, 70, 28, 76] is quite likely an

artefact either of the numerical approximations employed or of the shortness of

the inertial ranges.

It may that there is a similar origin of the t9/2-law proposed by Thomson

& Devenish [94] for synthetic turbulence ensembles with zero mean velocities.

Solutions of our diffusion model for such ensembles at Reynolds numbers compa-

rable to those employed in KS simulations that show a t9/2-law range reproduce

that finding, but our model yields instead distinct t2, t1, t6 and t1-ranges at

higher Reynolds numbers. Our results for our model thus illustrate the extreme

difficulty of determining asymptotic power-law ranges in Kinematic Simulations

are currently achievable resolutions.

It might more plausibly argued, however, that the t6 range that we ob-

serve in our diffusion model is a consequence of the Markovian approximation

which underlies it. As pointed out to us by David J. Thomson (private com-

munication) the Markovian approximation is questionable for the conditional

probability P (ym, s|x2,x1, t; a2, a1, t0) in the exact diffusivity formula (4.20).

Lagrangian particles move, to leading order, along straight lines at constant
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vector velocity and conditioning on the locations xm, am of particle m at times

t, t0 fixes its velocity as vm = (xm − am)/(t− t0) Thus, a good approximation

to P (ym, s|x2,x1, t; a2, a1, t0) is the delta function δ3(ym−xm−vm(s− t)) and

not the Markov approximation P (ym, s|xm, t) =
exp(−|ym−xm|2/2v20 |s−t|2)

(2πv20 |s−t|2)3/2
in which

vm is taken effectively to be a normal random variable with variance v2
0. When

velocity correlation times are not very short, the approximation proposed by

Thomson implies a non-Markovian evolution of the transition probability in

which particles located at position x at time t will experience different effective

diffusivities depending upon their initial location a at time t0, or, equivalently,

depending upon their initial velocities v(a, t0). It is plausible that using this

better approximation in our formula (4.20) will lead to the Thomson-Devenish

t9/2-law rather than the t6-law obtained from the Markovian approximation

employed.

Whether the correct scaling is t6, t9/2 or some other power, our analytical

results give strong support to the ”sweeping effect on particle dispersion in syn-

thetic models of Eulerian turbulence. Synthetic models of turbulence such as

Kinematic Simulations have been used to investigate turbulent transport of pas-

sive objects (particles, lines, etc.) in such varied problems as environmental flow,

aeroacoustics, kinematic magnetic dynamo, and superfluids [1, 77]. However,

such numerical studies must clearly be employed with utmost caution, especially

to derive conclusions about turbulent transport at very high Reynolds numbers.

The difference in sweeping effects in synthetic Eulerian turbulence and in real

hydrodynamic turbulence could imply substantially different physics even at

relatively low Reynolds numbers.
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It is noteworthy that several numerical simulations of pair dispersion in hy-

drodynamic turbulence have observed not only the t3-law but also the stretched-

exponential probability density function (PDF) of separations or “distance-

neighbor graph” predicted by Richardson, already at modestly high Reynolds

numbers [51, 9, 36]. None of the KS simulations which have observed a t3-law

of which we are aware [46, 34, 47, 28, 75, 76, 21] have also reported observ-

ing Richardson’s prediction for the self-similar PDF. The paper [75] observed

stretched-exponential PDFs of pair separation distances in two-dimensional KS

that are in good agreement with low Reynolds-number experiments in quasi-2D

stratified layers [72, 84], but which do not have the 2/3 stretching exponent

in Richardson’s PDF as observed in the higher Reynolds-number simulations

[51, 9, 36].This is another indication that the “t3-law” observed in those KS is a

non-asymptotic and non-Richardson effect arising from rather different physics.

For engineering or environmental modeling purposes it may frequently not

matter what is the precise origin of the t3-law. However, in cases where knowl-

edge of extreme or tail events is important (e.g. the range of dispersal of trace

amounts of a dangerous contaminant), KS could lead to erroneous predictions.

Discrepancies in particle dispersion properties between KS and hydrodynamic

turbulence will grow even larger as the Reynolds numbers increase. There are

flows with very extended inertial ranges in astrophysics (e.g. over eleven decades

of Kolmogorov spectrum in the interstellar medium [25]), where actual particle

dispersion properties must be quite different than what is predicted by KS at

the corresponding Reynolds numbers.
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Conclusion

The goal of this dissertation has been to develop a better understanding of

the physics of the particle separation in a turbulent flow. We approached the

problem from three very different angles. We first studied dispersion itself using

DNS, analytical results and stochastic models. We then built on the common

idea of diffusion models for this physics by deriving an exact diffusion equation

for the first time. We finally developed an diffusion model that we studied

numerically for non Navier-Stokes models (kinematic simulations) for turbulent

flows.

We now emphasize on the main ways in which this thesis has helped to

improve in the field of particle pair dispersion in turbulence.

Backward dispersion

An exact t3 term

In chapter 2, we developed the most convincing attempt so far to ”derive” the

Richardson t3 law from first principles and obtain the prefactor (Richardson con-

stant). This is not a proof and is semi-empirical, but it gives a strong argument

that the leading contribution in the t3-law for backward turbulent dispersion of

stochastic Lagrangian trajectories arises from an explicitly calculable term. We
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computed the backward Richardson constant to be g = 4/3. The formalism for

stochastic tracers developed in this chapter is relatively simple and opens the

door to many other possible research works. Moreover, this t3 term emerges

from the analysis as a true viscosity independent term present at all times. It

is therefore is good evidence for spontaneous separation of particle trajectories

emanating from a single point in the zero viscosity limit. This shows the t3-law

as a true asymptotic behavior of turbulent flows in the infinite Reynolds num-

ber limit and suggests the concept of spontaneous stochasticity as an underlying

mechanism for dispersion in turbulence. Spontaneous stochasticity can be seen

as an analogy to spontaneous symmetry breaking in condensed matter physics

and quantum field theory. It carries the idea that the particle trajectories which

solve a deterministic ODE with a rough (nonsmooth, singular) velocity field can

become random.

First systematic study of backward dispersion for the high-
est Reynolds numbers to this date

We made the first systematic study of backward dispersion for different final sep-

arations by looking at the rms separation distances between particle pairs but

also by measuring the probability distribution. We clearly showed for quan-

titative differences between backward and forward dispersion. Whereas the

Richardson constant for forward dispersion is usually measured to be ∼ 0.5−0.6,

we measured Richardson constants for backward dispersion to be ∼ 4/3. We, for

the first time, confirmed analytically and numerically a short time t4-law for the

separation statistics. This is the highest Reynolds number study of backward

dispersion to this date.
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Another view on the Batchelor regime

To our knowledge, it is the first time that an exact equation highlighting the

Batchelor regime is derived. The Batchelor regime is commonly believed to

occur as a short time expansion for the dispersion.

Diffusion models

Exact diffusion equation for the separation statistic: the
inverse problem

The second chapter has addressed the old idea to cast the study of dispersion in a

Turbulent flow into a diffusion problem, making the evolution of the probability

distribution of the system a more central issue. We derived a ”conditional

diffusion” formulation for PDF’s of general smooth flows with averaging over the

random velocity vector fields. The statistics are given by a stochastic diffusion

equation but with a conditional diffusivity that depends upon the initial state of

the system. We proved wrong the old concept of the necessity of delta correlated

velocities to obtain a diffusion physics. We understood that any dynamical

systems (following dx/dt = u type time evolution) could be cast into a diffusion

problem and is not bounded only to the turbulence problem. We solved the

inverse problem: given the probability distribution, we can infer the diffusion

equation that it solves. The diffusivity gives more physical insight than the

PDF alone and can be used as a basis of subsequent approximations.
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The assumptions that leads to Kraichnan and Lundgren
formula

Using our exact diffusion equation, we gave a justification for the validity of

Richardson’s diffusion approximation, while explaining how the short correlation-

time assumption led to quantitative errors in previous approximations of Kraich-

nan & Lundgren. It is the first time that a diffusion model has been able to

preserve the non-Markovian feature observed in real turbulence. The exact

diffusion equation gave us a reference to quantify the effects of the different

approximations that can be made. More importantly we understood what as-

sumptions did not need to be made (e.g. imcompressibility assumption) to

derive the Kraichnan and Lundgren formula and related improved formulas.

An exact diffusion equation for the joint probability dis-
tribution of separations and velocity differences statistics

The short correlation-time approximation that led to the Kraichnan and Lund-

gren formula makes the computation of the diffusivity considerably simpler

regardless how quantitatively wrong it may be. A Markovian approximation

relaxes the constraint on tracking each particle in the flow from their initial

position. That has been a motivation for looking for a diffusion model where

the short correlation-time approximation would be more valid. We derived an

exact diffusion equation for the joint transition probability of both the relative

position r and the relative velocity v of two Lagrangian particles. The short

time correlation of the acceleration field is more compatible with a Markovian

approximation.
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Diffusion model for Gaussian random fields

The sweeping effect or why kinematic simulations capture
a different physics than that of real turbulence

The last chapter built on the idea to describe turbulence through non Navier-

Stokes models, the so-called synthetic turbulence models. We add strong argu-

ment that these models cannot capture the features of real turbulence as the

particles are advected in a very different fashion than for real turbulence. For

the first time, we gave an analytical, first-principles argument for the existence

of the ”sweeping effect” proposed by Devenish & Thomson for 2-particle dis-

persion dispersion in synthetic models of Eulerian turbulent velocities. The

concrete model obtained by a Markovian approximation illustrates the effect of

sweeping and also demonstrates the extreme difficulty of probing asymptotic

scaling regimes by numerical solutions, even for the synthetic models, such as

Kinematic Simulations, which have been attractive because of their relatively

low computational cost.

The success of the diffusion model

We strongly criticized our Markovian approximation for being seriously defi-

cient, although the model developed in that chapter has considerable similitude

in behavior with kinematic simulations. The short time Batchelor regime is

exact up to the sweeping time. The t6-law in the inertial range of our model

qualitatively and quantitatively agrees with the time evolution of the dispersion

measured by Thomson and Devenish in the non zero mean velocity case. The

model is simple to manipulate we can explore the asymptotic limits that the
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kinematic simulations cannot.

Going beyond this diffusion model

We laid the ground for diffusion models for Gaussian random fields and we un-

derstood the strengths and weaknesses of the current model. David J. Thomson

in a private communication opened new perspectives for improving this model

by suggesting a simple approximation of constant-velocity particle motion due

to large-scale sweeping. This is the exact leading-order asymptotics of single-

particle motion in synthetic Gaussian turbulence and can be systematically

improved with corrections for relative advection and time-evolution of eddies

[23]. This simple approximation (instead of the Markovian one) could dramat-

ically change the behavior of our model and help explain the t9/2-law observed

by Thomson and Devenish in 2005.

Conclusion of the conclusion

This thesis material is mostly based on three articles published during my Ph.D.

with Pr. Greg L. Eyink and Theodore D. Drivas [38, 37, 5]. This thesis laid

down many new concepts and principles and I hope it can help generate many

future works in the field of relative dispersion in turbulent flows!
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Appendix A

Technical details for the
numerical studies of chapter 4

A.1 Details for the choice of the time step

We build the vector T (m)

T (m) = A exp(Bm) for m = 1, 2, ...,M. (A.1)

such that T (1) = 10−5τsw = 10−5r0/v0 � τsw and T (M) ' 34200tes =

34200v2
0/ε� tes to be sure that the numerical experiments capture the physics

associated to these time scales τsw and tes. As a consequence we have for v0 = 1

B =
ln(109

r0
)

M − 1
(A.2)

A = 10−5r0 exp(−B) (A.3)

For each T (m) we compute the value of 〈|r(T (m))|〉 or 〈|r(T (m)) − r0|〉 using

linear interpolation. We choose M such that the spacing between the T (m)

remain constant on a log-scale. We have

ln(T (m+ 1))− ln(T (m)) = B (A.4)
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Figure A.1: Monte Carlo results for 〈|r(t)− r0|2〉 in the inertial-range diffusion
model calculated with S = 102 samples and varying C∆ = 1 to C∆ = 10−6.
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Figure A.2: Monte Carlo results for 〈|r(t) − r0|2〉 in the KS diffusion model
calculated with C∆ = 1, S = 104 samples, varying number of Fourier modes
from N = 10 to N = 104.

giving

M =
ln(109

r0
)

B
+ 1 (A.5)

Convergence analysis showed that B ' 9.2× 10−3 is the limiting value leading

to a converged simulation for C∆ = 1 (see Appendix A.2).

A.2 Monte Carlo Time-Step

We tested the dependence of the log-log plots of dispersion on the value of C∆.

We plot in Fig. A.1 the Monte Carlo results for values of C∆ ranging from 1 to
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10−6. There is no observable change in the behavior.

A.3 Number of Fourier Modes

We also tested the dependence of our dispersion results for the KS diffusion

models on the number of Fourier modes N . We show in Fig. A.2 log-log plots

of the dispersion curves for different values of N, obtained from Monte Carlo

calculations with C∆ = 1 and S = 104. The results are nearly indistinguishable

for N & 100. All of our simulations in the text used N = 500.
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